Electrically charged isotropic stars with Tolman− I V model
暂无分享,去创建一个
[1] N. Pant,et al. Hybrid star model in Tolman-Buchdahl metric potentials with coupled dark energy and baryonic matter , 2022, Astrophysics and Space Science.
[2] K. Singh,et al. Self-gravitating anisotropic compact objects in 5D EGB gravity , 2022, The European Physical Journal Plus.
[3] A. Abdel‐Aty,et al. Self-gravitating anisotropic model in general relativity under modified Van der Waals equation of state: a stable configuration , 2022, The European Physical Journal C.
[4] M. K. Jasim,et al. Study on anisotropic star in extended teleparallel gravity with minimal matter coupling , 2022, Chinese Journal of Physics.
[5] Y. Khedif,et al. Anisotropic stars of class one space–time in f(R,T) gravity under the simplest linear functional of the matter-geometry coupling , 2022, Chinese Journal of Physics.
[6] Y. Khedif,et al. Exploring physical features of anisotropic quark stars in Brans-Dicke theory with a massive scalar field via embedding approach , 2021, Chinese Physics C.
[7] K. Singh,et al. Anisotropic stars via embedding approach in Brans–Dicke gravity , 2021, The European Physical Journal C.
[8] A. Banerjee,et al. Anisotropic quark stars in Einstein-Gauss-Bonnet theory , 2021 .
[9] M. Daoud,et al. A new well-behaved class of compact strange astrophysical model consistent with observational data , 2021, The European Physical Journal C.
[10] A. Banerjee,et al. Quark stars in the Einstein–Gauss–Bonnet theory: A new branch of stellar configurations , 2021, Annals of Physics.
[11] Y. Khedif,et al. Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.
[12] M. K. Jasim,et al. Charged strange stellar model describing by Tolman V metric , 2020, Results in Physics.
[13] M. Zubair,et al. Strong deflection gravitational lensing for photon coupled to Weyl tensor in a charged Kiselev black hole , 2021 .
[14] M. Daoud,et al. Gravitational decoupling minimal geometric deformation model in modified f(R,T) gravity theory , 2020 .
[15] S. Gedela,et al. Relativistic parametric embedding class I solutions of cold stars in Karmarkar space-time continuum , 2020 .
[16] S. Gedela,et al. Stellar modeling with the Einstein-Maxwell field equations via gravitational decoupling , 2020 .
[17] M. Daoud,et al. Studies an analytic model of a spherically symmetric compact object in Einsteinian gravity , 2020, The European Physical Journal C.
[18] S. Gedela,et al. Core-envelope model of super dense star with distinct equation of states , 2019, The European Physical Journal C.
[19] S. Gedela,et al. Relativistic core-envelope anisotropic fluid model of super dense stars , 2019, The European Physical Journal C.
[20] E. Sayouty,et al. A spherically symmetric model of anisotropic fluid for strange quark spheres , 2019, The European Physical Journal C.
[21] M. Daoud,et al. Model Astrophysical Configurations with the Equation of State of Chaplygin Gas , 2019, Foundations of Physics.
[22] S. K. Maurya,et al. Charged anisotropic strange stars in general relativity , 2019, The European Physical Journal C.
[23] A. Banerjee,et al. Relativistic charged spheres: compact stars, compactness and stable configurations , 2018, Journal of Cosmology and Astroparticle Physics.
[24] M. Daoud,et al. Phantom gravastar supported for the explanation of compact dark matter objects , 2017 .
[25] M. Zubair,et al. Collapse and Expansion of Plane Symmetric Charged Anisotropic Source , 2017 .
[26] Y. K. Gupta,et al. All spherically symmetric charged anisotropic solutions for compact stars , 2015, 1502.01915.
[27] C. Moustakidis. The stability of relativistic stars and the role of the adiabatic index , 2016, 1612.01726.
[28] K. Singh,et al. A new analytic solution representing anisotropic stellar objects in embedding class I , 2016 .
[29] K. Singh,et al. Charged anisotropic Buchdahl solution as an embedding class I spacetime , 2016 .
[30] Y. K. Gupta,et al. Spherically symmetric charged compact stars , 2015, The European Physical Journal C.
[31] K. Kokkotas,et al. Slowly rotating neutron and strange stars in R2 gravity , 2014, 1407.2180.
[32] K. Kokkotas,et al. Non-perturbative and self-consistent models of neutron stars in R-squared gravity , 2014, 1402.4469.
[33] S. Capozziello,et al. Further stable neutron star models from f(R) gravity , 2013, 1309.1978.
[34] T. Kajino,et al. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields , 2013, 1304.1871.
[35] Y. K. Gupta,et al. A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions , 2012 .
[36] N. Pant,et al. A new well behaved exact solution in general relativity for perfect fluid , 2012 .
[37] Y. K. Gupta,et al. A new family of polynomial solutions for charged fluid spheres , 2012 .
[38] Y. K. Gupta,et al. A class of well behaved charged superdense star models of embedding class one , 2011 .
[39] Y. K. Gupta,et al. On a family of well behaved perfect fluid balls as astrophysical objects in general relativity , 2011 .
[40] N. Pant. Well behaved parametric class of relativistic charged fluid ball in general relativity , 2011 .
[41] Y. K. Gupta,et al. A class of regular and well behaved relativistic super-dense star models , 2011 .
[42] N. Pant. Some new exact solutions with finite central parameters and uniform radial motion of sound , 2011 .
[43] S. Rajasekhara,et al. Variety of Well behaved parametric classes of relativistic charged fluid spheres in general relativity , 2011 .
[44] K. Ekşi,et al. Constraints on perturbative f(R) gravity via neutron stars , 2010, 1003.3179.
[45] N. Pant,et al. New class of regular and well behaved exact solutions in general relativity , 2010 .
[46] B. Nord,et al. Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst , 2009, 0901.3991.
[47] H. Andréasson. Sharp bounds on 2m/r of general spherically symmetric static objects , 2008 .
[48] S. Maharaj,et al. Classes of exact Einstein–Maxwell solutions , 2007, 0808.1998.
[49] H. Andréasson. Mathematical Sciences , 1983, The British Journal for the History of Science.
[50] C. Boehmer,et al. Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.
[51] P. Chavanis. Gravitational instability of finite isothermal spheres in general relativity. Analogy with neutron stars , 2001, astro-ph/0108230.
[52] F. Felice,et al. RELATIVISTIC CHARGED SPHERES : II. REGULARITY AND STABILITY , 1999, gr-qc/9905099.
[53] D. G. Yakovlev. Electrical Conductivity of Neutron Star Cores and Evolution of Internal Magnetic Fields , 1991 .
[54] E. N. Glass,et al. The stability of relativistic gas spheres , 1983 .
[55] W. Bonnor,et al. Exact Solutions for Oscillating Spheres in General Relativity , 1967 .
[56] S. Chandrasekhar. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .
[57] S. Chandrasekhar,et al. Problems of Gravitational Stability in the Presence of a Magnetic Field , 1953 .
[58] S. Rosseland. Electrical State of a Star , 1924 .
[59] H. Reissner,et al. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie , 1916 .