Electrically charged isotropic stars with TolmanIV model

[1]  N. Pant,et al.  Hybrid star model in Tolman-Buchdahl metric potentials with coupled dark energy and baryonic matter , 2022, Astrophysics and Space Science.

[2]  K. Singh,et al.  Self-gravitating anisotropic compact objects in 5D EGB gravity , 2022, The European Physical Journal Plus.

[3]  A. Abdel‐Aty,et al.  Self-gravitating anisotropic model in general relativity under modified Van der Waals equation of state: a stable configuration , 2022, The European Physical Journal C.

[4]  M. K. Jasim,et al.  Study on anisotropic star in extended teleparallel gravity with minimal matter coupling , 2022, Chinese Journal of Physics.

[5]  Y. Khedif,et al.  Anisotropic stars of class one space–time in f(R,T) gravity under the simplest linear functional of the matter-geometry coupling , 2022, Chinese Journal of Physics.

[6]  Y. Khedif,et al.  Exploring physical features of anisotropic quark stars in Brans-Dicke theory with a massive scalar field via embedding approach , 2021, Chinese Physics C.

[7]  K. Singh,et al.  Anisotropic stars via embedding approach in Brans–Dicke gravity , 2021, The European Physical Journal C.

[8]  A. Banerjee,et al.  Anisotropic quark stars in Einstein-Gauss-Bonnet theory , 2021 .

[9]  M. Daoud,et al.  A new well-behaved class of compact strange astrophysical model consistent with observational data , 2021, The European Physical Journal C.

[10]  A. Banerjee,et al.  Quark stars in the Einstein–Gauss–Bonnet theory: A new branch of stellar configurations , 2021, Annals of Physics.

[11]  Y. Khedif,et al.  Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.

[12]  M. K. Jasim,et al.  Charged strange stellar model describing by Tolman V metric , 2020, Results in Physics.

[13]  M. Zubair,et al.  Strong deflection gravitational lensing for photon coupled to Weyl tensor in a charged Kiselev black hole , 2021 .

[14]  M. Daoud,et al.  Gravitational decoupling minimal geometric deformation model in modified f(R,T) gravity theory , 2020 .

[15]  S. Gedela,et al.  Relativistic parametric embedding class I solutions of cold stars in Karmarkar space-time continuum , 2020 .

[16]  S. Gedela,et al.  Stellar modeling with the Einstein-Maxwell field equations via gravitational decoupling , 2020 .

[17]  M. Daoud,et al.  Studies an analytic model of a spherically symmetric compact object in Einsteinian gravity , 2020, The European Physical Journal C.

[18]  S. Gedela,et al.  Core-envelope model of super dense star with distinct equation of states , 2019, The European Physical Journal C.

[19]  S. Gedela,et al.  Relativistic core-envelope anisotropic fluid model of super dense stars , 2019, The European Physical Journal C.

[20]  E. Sayouty,et al.  A spherically symmetric model of anisotropic fluid for strange quark spheres , 2019, The European Physical Journal C.

[21]  M. Daoud,et al.  Model Astrophysical Configurations with the Equation of State of Chaplygin Gas , 2019, Foundations of Physics.

[22]  S. K. Maurya,et al.  Charged anisotropic strange stars in general relativity , 2019, The European Physical Journal C.

[23]  A. Banerjee,et al.  Relativistic charged spheres: compact stars, compactness and stable configurations , 2018, Journal of Cosmology and Astroparticle Physics.

[24]  M. Daoud,et al.  Phantom gravastar supported for the explanation of compact dark matter objects , 2017 .

[25]  M. Zubair,et al.  Collapse and Expansion of Plane Symmetric Charged Anisotropic Source , 2017 .

[26]  Y. K. Gupta,et al.  All spherically symmetric charged anisotropic solutions for compact stars , 2015, 1502.01915.

[27]  C. Moustakidis The stability of relativistic stars and the role of the adiabatic index , 2016, 1612.01726.

[28]  K. Singh,et al.  A new analytic solution representing anisotropic stellar objects in embedding class I , 2016 .

[29]  K. Singh,et al.  Charged anisotropic Buchdahl solution as an embedding class I spacetime , 2016 .

[30]  Y. K. Gupta,et al.  Spherically symmetric charged compact stars , 2015, The European Physical Journal C.

[31]  K. Kokkotas,et al.  Slowly rotating neutron and strange stars in R2 gravity , 2014, 1407.2180.

[32]  K. Kokkotas,et al.  Non-perturbative and self-consistent models of neutron stars in R-squared gravity , 2014, 1402.4469.

[33]  S. Capozziello,et al.  Further stable neutron star models from f(R) gravity , 2013, 1309.1978.

[34]  T. Kajino,et al.  Neutron stars in a perturbative f(R) gravity model with strong magnetic fields , 2013, 1304.1871.

[35]  Y. K. Gupta,et al.  A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions , 2012 .

[36]  N. Pant,et al.  A new well behaved exact solution in general relativity for perfect fluid , 2012 .

[37]  Y. K. Gupta,et al.  A new family of polynomial solutions for charged fluid spheres , 2012 .

[38]  Y. K. Gupta,et al.  A class of well behaved charged superdense star models of embedding class one , 2011 .

[39]  Y. K. Gupta,et al.  On a family of well behaved perfect fluid balls as astrophysical objects in general relativity , 2011 .

[40]  N. Pant Well behaved parametric class of relativistic charged fluid ball in general relativity , 2011 .

[41]  Y. K. Gupta,et al.  A class of regular and well behaved relativistic super-dense star models , 2011 .

[42]  N. Pant Some new exact solutions with finite central parameters and uniform radial motion of sound , 2011 .

[43]  S. Rajasekhara,et al.  Variety of Well behaved parametric classes of relativistic charged fluid spheres in general relativity , 2011 .

[44]  K. Ekşi,et al.  Constraints on perturbative f(R) gravity via neutron stars , 2010, 1003.3179.

[45]  N. Pant,et al.  New class of regular and well behaved exact solutions in general relativity , 2010 .

[46]  B. Nord,et al.  Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst , 2009, 0901.3991.

[47]  H. Andréasson Sharp bounds on 2m/r of general spherically symmetric static objects , 2008 .

[48]  S. Maharaj,et al.  Classes of exact Einstein–Maxwell solutions , 2007, 0808.1998.

[49]  H. Andréasson Mathematical Sciences , 1983, The British Journal for the History of Science.

[50]  C. Boehmer,et al.  Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.

[51]  P. Chavanis Gravitational instability of finite isothermal spheres in general relativity. Analogy with neutron stars , 2001, astro-ph/0108230.

[52]  F. Felice,et al.  RELATIVISTIC CHARGED SPHERES : II. REGULARITY AND STABILITY , 1999, gr-qc/9905099.

[53]  D. G. Yakovlev Electrical Conductivity of Neutron Star Cores and Evolution of Internal Magnetic Fields , 1991 .

[54]  E. N. Glass,et al.  The stability of relativistic gas spheres , 1983 .

[55]  W. Bonnor,et al.  Exact Solutions for Oscillating Spheres in General Relativity , 1967 .

[56]  S. Chandrasekhar The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .

[57]  S. Chandrasekhar,et al.  Problems of Gravitational Stability in the Presence of a Magnetic Field , 1953 .

[58]  S. Rosseland Electrical State of a Star , 1924 .

[59]  H. Reissner,et al.  Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie , 1916 .