Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12 *

[1]  Haohao Sun,et al.  Structure and Negative Thermal Expansion in Zr0.3Sc1.7Mo2.7V0.3O12. , 2020, Inorganic chemistry.

[2]  Xiansheng Liu,et al.  Laser scattering, transmittance and low thermal expansion behaviors in ${{\rm{Y}}}_{2-x}$(ZnLi) x Mo 3 O 12 by forming regular grains , 2019, Chinese Physics B.

[3]  Juan-Yu Yang,et al.  Sc2W3O12/Cu composites with low thermal expansion coefficient and high thermal conductivity for efficient cooling of electronics , 2019, Journal of Alloys and Compounds.

[4]  You-wen Liu,et al.  Phase transition and near-zero thermal expansion of Zr 0.5 Hf 0.5 VPO 7 , 2018, Chinese Physics B.

[5]  Weikang Sun,et al.  Tailorable thermal expansion and hygroscopic properties of cerium-substituted Y 2 W 3 O 12 ceramics , 2018, Journal of Alloys and Compounds.

[6]  N. Sharma,et al.  Electrochemical performance and structure of Al2W3−xMoxO12 , 2018 .

[7]  E. Liang,et al.  Phase transition and negative thermal expansion of HfMnMo 3 O 12 , 2018 .

[8]  I. Yanase,et al.  Effect of B substitution on thermal changes of UV–Vis and Raman spectra and color of Al2W3O12 powder , 2018, Journal of Thermal Analysis and Calorimetry.

[9]  Xiansheng Liu,et al.  Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y 2 Mo 3 O 12 cermets , 2017 .

[10]  E. Liang,et al.  A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence , 2017 .

[11]  Yu Jia,et al.  Phase transition and near-zero thermal expansion in ZrFeMo 2 VO 12 , 2016 .

[12]  Xiansheng Liu,et al.  A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission , 2016 .

[13]  Xiansheng Liu,et al.  Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12 , 2016, Scientific Reports.

[14]  Lila A. Alkhtaby,et al.  Investigation of the role of iron doping on the structural, optical and photoluminescence properties of sol–gel derived TiO2 nanoparticles , 2016 .

[15]  X. Liu,et al.  In situ investigation of the surface morphology evolution of the bulk ceramic Y2Mo3O12 during crystal water release. , 2015, Physical chemistry chemical physics : PCCP.

[16]  Xiansheng Liu,et al.  Electrical properties of Al–ZrMgMo3O12 with controllable thermal expansion , 2015 .

[17]  Ilka M. Hermes,et al.  Low Temperature Synthesis and Characterization of AlScMo3O12 , 2015, Materials.

[18]  Xiaoling Xiao,et al.  Study of the structures and thermal expansion properties of solid solutions Yb2−xDyxW3O12 (0≤x≤1.5 and 1.8≤x≤2.0) , 2013 .

[19]  M. White,et al.  Near‐Zero Thermal Expansion in In(HfMg)0.5Mo3O12 , 2013 .

[20]  M. White,et al.  The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12 , 2013, Journal of Materials Science.

[21]  Hongfei Liu,et al.  Synthesis and thermal expansion properties of Y2−xLaxMo3O12 (x=0, 0.5, 2) , 2012 .

[22]  Xi-Qiao Feng,et al.  Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. , 2012, Nature materials.

[23]  Wenbo Song,et al.  The phase transition, hygroscopicity, and thermal expansion properties of Yb2−xAlxMo3O12 , 2012 .

[24]  N. K. James,et al.  Synthesis, structural and microwave dielectric properties of Al2W3−xMoxO12 (x = 0–3) ceramics , 2011 .

[25]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[26]  M. White,et al.  Rapid synthesis of the low thermal expansion phase of Al2Mo3O12 via a sol–gel method using polyvinyl alcohol , 2011 .

[27]  Fusheng Liu,et al.  Negative Thermal Expansion and Correlated Magnetic and Electrical Properties of Si‐Doped Mn3GaN Compounds , 2010 .

[28]  Yu Jia,et al.  Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2 , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  T. Varga,et al.  Thermochemistry of A_2M_3O_12 negative thermal expansion materials , 2007 .

[30]  A. Sleight,et al.  Bulk thermal expansion for tungstate and molybdates of the type A_2M_3O_12 , 1999 .

[31]  John S. O. Evans,et al.  Negative Thermal Expansion in a Large Molybdate and Tungstate Family , 1997 .

[32]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[33]  R. A. Suleimanov,et al.  The nature of negative linear expansion of graphite crystals , 1993 .