Dynamic analysis of human walking

Synthetising realistic animations of human figures should benefit from both a priori biomechanical knowledge on human motion and physically-based simulation techniques, eager to adapt motion to the specific environment in which it takes place. This paper performs a first step towards this goal, by computing and analyzing the internal actuator forces involved when the human figure performs specific walk motions. The computations rely on a robust simulator where forward and inverse dynamics are combined with automatic collision detection and response. The force curves we obtain give interesting information on the respective action of muscles in various styles of walks. Our further plans include parameterizing them and using them to control physically-based simulations of walk motions.

[1]  Thomas W. Calvert,et al.  Goal-directed, dynamic animation of human walking , 1989, SIGGRAPH.

[2]  Norman I. Badler,et al.  Animating human locomotion with inverse dynamics , 1996, IEEE Computer Graphics and Applications.

[3]  Michiel van de Panne,et al.  Motion synthesis by example , 1996 .

[4]  R. Enoka Neuromechanical Basis of Kinesiology, 2nd Edition , 1995 .

[5]  P. Loslever,et al.  Méthode informatisée de mesure et d'analyse des forces de réaction et des angles articulaires de la marche normale , 1994 .

[6]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[7]  Ken-ichi Anjyo,et al.  Fourier principles for emotion-based human figure animation , 1995, SIGGRAPH.

[8]  Armin Bruderlin,et al.  Interactive animation of personalized human locomotion , 1993 .

[9]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[10]  Daniel Thalmann,et al.  Inverse Kinetics for Center of Mass Position Control and Posture Optimization , 1994 .

[11]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[12]  J. Halbertsma,et al.  Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. , 1985, Acta physiologica Scandinavica.

[13]  Michael F. Cohen,et al.  Efficient generation of motion transitions using spacetime constraints , 1996, SIGGRAPH.

[14]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[15]  François Faure,et al.  An Energy‐Based Approach for Contact Force Computation , 1996, Comput. Graph. Forum.

[16]  Joe Marks,et al.  Spacetime constraints revisited , 1993, SIGGRAPH.

[17]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[18]  David Baraff,et al.  Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.