Automatically recognizing places of interest from unreliable GPS data using spatio-temporal density estimation and line intersections

Stay points are important for recognizing significant places from a mobile user's GPS trajectory. Such places are often located indoors and in urban canyons, where GPS is unreliable. Consequently, mapping a user's stay point to a Place of Interest (POI) using only GPS data is particularly challenging. Our novel algorithm employs both spatio-temporal density estimation and line count inference to predict and rank a user's POI(s) at building level accuracy from noisy time-annotated GPS data points. An experimental study demonstrates the superiority of our algorithm against several baseline approaches with a recall of 96.5% for the top 5 retrieved locations.

[1]  Wei-Ying Ma,et al.  Recommending friends and locations based on individual location history , 2011, ACM Trans. Web.

[2]  John E A Bertram,et al.  Constrained optimization in human walking: cost minimization and gait plasticity , 2005, Journal of Experimental Biology.

[3]  J. F. Ramaley Buffon's Noodle Problem , 1969 .

[4]  E. Gumbel,et al.  The Circular Normal Distribution: Theory and Tables , 1953 .

[5]  M. Hazelton,et al.  Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation , 2005 .

[6]  Bill N. Schilit,et al.  Place Lab: Device Positioning Using Radio Beacons in the Wild , 2005, Pervasive.

[7]  Xing Xie,et al.  Finding similar users using category-based location history , 2010, GIS '10.

[8]  Mohamed Ali,et al.  Safe step: a real-time gps tracking and analysis system for criminal activities using ankle bracelets , 2013, SIGSPATIAL/GIS.

[9]  Tarn Dunong Bandwidth selectors for multivariate kernel density estimation , 2005, Bulletin of the Australian Mathematical Society.

[10]  Kevin J. Gaston,et al.  Global distribution and conservation of rare and threatened vertebrates , 2009, Nature.

[11]  Barry J. Arnow On Laplace's Extension of the Buffon Needle Problem , 1994 .

[12]  Scott A. Shearer,et al.  Monitoring cattle behavior and pasture use with GPS and GIS , 2000 .

[13]  Andrew Hogue,et al.  Learning to rank for spatiotemporal search , 2013, WSDM.

[14]  W. H. Engelmann,et al.  The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants , 2001, Journal of Exposure Analysis and Environmental Epidemiology.

[15]  Deborah Estrin,et al.  SensLoc: sensing everyday places and paths using less energy , 2010, SenSys '10.

[16]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[17]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[18]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[19]  Niels Brouwers,et al.  Dwelling in the canyons: Dwelling detection in urban environments using GPS, Wi-Fi, and geolocation , 2013, Pervasive Mob. Comput..

[20]  Christian S. Jensen,et al.  Mining significant semantic locations from GPS data , 2010, Proc. VLDB Endow..

[21]  Takeshi Kurata,et al.  Indoor/Outdoor Pedestrian Navigation with an Embedded GPS/RFID/Self-contained Sensor System , 2006, ICAT.

[22]  Yu Zheng,et al.  Computing with Spatial Trajectories , 2011, Computing with Spatial Trajectories.

[23]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[24]  R. McNeill Alexander Energetics and optimization of human walking and running: The 2000 Raymond Pearl memorial lecture , 2002, American journal of human biology : the official journal of the Human Biology Council.

[25]  Feng Zhao,et al.  Hapori: context-based local search for mobile phones using community behavioral modeling and similarity , 2010, UbiComp.

[26]  Mika Raento,et al.  Adaptive On-Device Location Recognition , 2004, Pervasive.

[27]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[28]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Tarn Duong,et al.  ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R , 2007 .

[31]  T. Duong,et al.  Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices , 2010 .

[32]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR Forum.

[33]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[34]  M. Kendall Probability and Statistical Inference , 1956, Nature.

[35]  Deborah Estrin,et al.  Discovering semantically meaningful places from pervasive RF-beacons , 2009, UbiComp.

[36]  Henry A. Kautz,et al.  Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields , 2007, Int. J. Robotics Res..

[37]  PentlandAlex,et al.  Reality mining: sensing complex social systems , 2006 .

[38]  Gi-Wan Yoon,et al.  A Probabilistic Place Extraction Algorithm Based on a Superstate Model , 2013, IEEE Transactions on Mobile Computing.

[39]  Matthew D'Souza,et al.  Evaluation of realtime people tracking for indoor environments using ubiquitous motion sensors and limited wireless network infrastructure , 2013, Pervasive Mob. Comput..

[40]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004, MOCO.

[41]  Ramachandran Ramjee,et al.  Nericell: rich monitoring of road and traffic conditions using mobile smartphones , 2008, SenSys '08.

[42]  José E. Chacón,et al.  UNCONSTRAINED PILOT SELECTORS FOR SMOOTHED CROSS‐VALIDATION , 2011 .

[43]  Xing Xie,et al.  Towards mobile intelligence: Learning from GPS history data for collaborative recommendation , 2012, Artif. Intell..

[44]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[45]  Russell Congalton,et al.  Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition , 1998 .

[46]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[47]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[48]  Chris Schmandt,et al.  Location-Aware Information Delivery with ComMotion , 2000, HUC.

[49]  Sunny Consolvo,et al.  Learning and Recognizing the Places We Go , 2005, UbiComp.

[50]  Kentaro Toyama,et al.  Project Lachesis: Parsing and Modeling Location Histories , 2004, GIScience.

[51]  Sivan Toledo,et al.  VTrack: accurate, energy-aware road traffic delay estimation using mobile phones , 2009, SenSys '09.

[52]  James Bailey,et al.  Extracting significant places from mobile user GPS trajectories: a bearing change based approach , 2012, SIGSPATIAL/GIS.

[53]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[54]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[55]  Mingyan Liu,et al.  Surface street traffic estimation , 2007, MobiSys '07.

[56]  Sourav Bhattacharya,et al.  Identifying Meaningful Places: The Non-parametric Way , 2009, Pervasive.

[57]  Eric Horvitz,et al.  LOCADIO: inferring motion and location from Wi-Fi signal strengths , 2004, The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004..

[58]  Amit Gutman Inference of Animal Activity From GPS Collar Data on Free-Ranging Cattle , 2005 .

[59]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[60]  M. Hazelton,et al.  Plug-in bandwidth matrices for bivariate kernel density estimation , 2003 .

[61]  H. Ralston Energy-speed relation and optimal speed during level walking , 1958, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[62]  Mikkel Baun Kjærgaard,et al.  Indoor Positioning Using GPS Revisited , 2010, Pervasive.

[63]  Iram Fatima,et al.  Trajectory Based Activity Monitoring and HealthCare Provisioning , 2012 .

[64]  A. Ruina,et al.  Multiple walking speed-frequency relations are predicted by constrained optimization. , 2001, Journal of theoretical biology.

[65]  G. Lachapelle,et al.  PEDESTRIAN DEAD RECKONING— A SOLUTION TO NAVIGATION IN GPS SIGNAL DEGRADED AREAS? , 2005 .

[66]  Xing Xie,et al.  Learning location naming from user check-in histories , 2011, GIS.

[67]  Peter I. Corke,et al.  Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing , 2009, Sensors.

[68]  Xing Xie,et al.  Collaborative location and activity recommendations with GPS history data , 2010, WWW '10.

[69]  Ellen M. Voorhees,et al.  The TREC-8 Question Answering Track Report , 1999, TREC.

[70]  KulikLars,et al.  Automatically recognizing places of interest from unreliable GPS data using spatio-temporal density estimation and line intersections , 2015 .