Variable-basis Categorically-algebraic Dualities

Abstract The manuscript continues our study on developing a categorically-algebraic (catalg) analogue of the theory of natural dualities of D. Clark and B. Davey, which provides a machinery for obtaining topological representations of algebraic structures. The new setting differs from its predecessor in relying on catalg topology, introduced lately by the author as a new approach to topological structures, which incorporates the majority of both crisp and many-valued developments, ultimately erasing the border between them. Motivated by the variable-basis lattice-valued extension of the Stone representation theorems done by S. E. Rodabaugh, we have recently presented a catalg version of the Priestley duality for distributive lattices, which gave rise (as in the classical case) to a fixed-basis variety-based approach to natural dualities. In this paper, we extend the theory to variable-basis, whose setting is completely different from the respective one of S. E. Rodabaugh, restricted to isomorphisms between the underlying lattices of the spaces.

[1]  S. Solovyov,et al.  ALGEBRAICALLY-TOPOLOGICAL SYSTEMS AND ATTACHMENTS , 2013 .

[2]  Sergey A. Solovyov,et al.  Sobriety and spatiality in varieties of algebras , 2008, Fuzzy Sets Syst..

[3]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[4]  M. Stone Topological representations of distributive lattices and Brouwerian logics , 1938 .

[5]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[6]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[7]  J. Goguen L-fuzzy sets , 1967 .

[8]  Jan Paseka,et al.  Algebraic and Categorical Aspects of Quantales , 2008 .

[9]  K. I. Rosenthal Quantales and their applications , 1990 .

[10]  J. Isbell General Functorial Semantics, I , 1972 .

[11]  Stephen E. Rodabaugh,et al.  Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .

[12]  C. L. Chang,et al.  Fuzzy topological spaces , 1968 .

[13]  Yves Diers Affine algebraic sets relative to an algebraic theory , 1999 .

[14]  Sergey A. Solovyov,et al.  Categorical foundations of variety-based topology and topological systems , 2012, Fuzzy Sets Syst..

[15]  Ina Ciobanu,et al.  On free topological groups , 2009 .

[16]  Transferring Optimal Dualities: Theory and Practice , 2003, Journal of the Australian Mathematical Society.

[17]  Jeffrey T. Denniston,et al.  Functorial relationships between lattice-valued topology and topological systems , 2009 .

[18]  Joseph A. Goguen,et al.  The fuzzy tychonoff theorem , 1973 .

[19]  W. Tholen,et al.  Groups of dualities , 1993 .

[20]  S. Lane Categories for the Working Mathematician , 1971 .

[21]  S. Solovyov,et al.  Dual attachment pairs in categorically-algebraic topology , 2013 .

[23]  U. Höhle Upper semicontinuous fuzzy sets and applications , 1980 .

[24]  Stephen E. Rodabaugh,et al.  Separation Axioms: Representation Theorems, Compactness, and Compactifications , 1999 .

[25]  David M. Clark,et al.  Natural Dualities for the Working Algebraist , 1998 .

[26]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[27]  C. Guido Powerset Operators Based Approach To Fuzzy Topologies On Fuzzy Sets , 2003 .

[28]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .

[29]  M. Stone The theory of representations for Boolean algebras , 1936 .

[30]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[31]  Cosimo Guido,et al.  Fuzzy points and attachment , 2010, Fuzzy Sets Syst..

[32]  Brian A. Davey Duality Theory on Ten Dollars a Day , 1993 .

[33]  L. Pontrjagin,et al.  The Theory of Topological Commutative Groups , 1934 .

[34]  J. Lambek,et al.  A general Stone-Gel’fand duality , 1979 .

[35]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[36]  Mustafa Demirci,et al.  Pointed semi-quantales and lattice-valued topological spaces , 2010, Fuzzy Sets Syst..

[37]  S. Solovyov POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES , 2011 .

[38]  Yves Diers Categories of algebraic sets , 1996, Appl. Categorical Struct..

[39]  Y. Diers Topological geometrical categories , 2002 .

[40]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[41]  Fatma Bayoumi,et al.  Overview and comparison of localic and fixed-basis topological products , 2010, Fuzzy Sets Syst..

[42]  U. Höhle Many Valued Topology and its Applications , 2001 .

[43]  J. Muscat $$C^*$$ C ∗ -Algebras , 2014 .

[44]  S. Solovyov Localification of variable-basis topological systems , 2011 .

[45]  S. E. Rodabaugh Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics , 2008 .

[46]  Stephen Ernest Rodabaugh,et al.  Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..

[47]  George Gratzer,et al.  Universal Algebra , 1979 .

[48]  Austin Melton,et al.  Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..

[49]  Patrik Eklund,et al.  Fuzzy Filter Functions and Convergence , 1992 .

[50]  W. Gähler,et al.  Monadic Convergence Structures , 2003 .

[51]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[52]  Sergey A. Solovyov,et al.  Hypergraph functor and attachment , 2010, Fuzzy Sets Syst..

[53]  Stephen E. Rodabaugh,et al.  Categorical Frameworks for Stone Representation Theories , 1992 .

[54]  H. Simmons,et al.  A couple of triples , 1982 .

[55]  Hilary A. Priestley Natural dualities for varieties of distributive lattices with a quantifier , 1993 .

[56]  S. Solovyov CATEGORICALLY-ALGEBRAIC DUALITIES , 2010 .

[57]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[58]  Sergey A. Solovyov,et al.  On the category Set(JCPos) , 2006, Fuzzy Sets Syst..

[59]  Stephen Ernest Rodabaugh,et al.  Relationship of algebraic theories to powersets over objects in Set and Set × C , 2010, Fuzzy Sets Syst..