A bound on the chromatic number of the square of a planar graph

Wegner conjectured that the chromatic number of the square of any planar graph G with maximum degree Δ ≥ 8 is bounded by χ(G2) ≤ ⌊3/2 Δ⌋ + 1. We prove the bound χ(G2) ≤ ⌈5/3 Δ⌉ + 78. This is asymptotically an improvement on the previously best-known bound. For large values of Δ we give the bound of χ(G2) ≤ ⌈5/3 Δ⌉ + 25. We generalize this result to L(p, q)-labeling of planar graphs, by showing that λqp(G) ≤ q ⌈5/3 Δ⌉ + 18p + 77q - 18. For each of the results, the proof provides a quadratic time algorithm.

[1]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[2]  Paul G. Spirakis,et al.  Hardness Results and Efficient Approximations for Frequency Assignment Problems: Radio Labelling and Radio Coloring , 2001, Comput. Artif. Intell..

[3]  Hajo Broersma,et al.  Stars and bunches in planar graphs. Part II: General planar graphs and colourings , 2002 .

[4]  Hajo Broersma,et al.  Stars and bunches in planar graphs. Part I: Triangulations , 2002 .

[5]  Yue Zhao,et al.  A New Bound on the Cyclic Chromatic Number , 2001, J. Comb. Theory, Ser. B.

[6]  Magnús M. Halldórsson,et al.  Coloring powers of planar graphs , 2000, SODA '00.

[7]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[8]  Jan van den Heuvel,et al.  Coloring the square of a planar graph , 2003 .

[9]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[10]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[11]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[12]  John P. Georges,et al.  On the size of graphs labeled with a condition at distance two , 1996, J. Graph Theory.

[13]  Subramanian Ramanathan,et al.  On the complexity of distance-2 coloring , 1992, Proceedings ICCI `92: Fourth International Conference on Computing and Information.

[14]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[15]  Jan van Leeuwen,et al.  Approximations for -Coloring of Graphs , 2004 .

[16]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[17]  Liu Jia-zhuang The L(3,2,1)-Labeling Problem on Graphs , 2004 .

[18]  Subramanian Ramanathan,et al.  Scheduling algorithms for multi-hop radio networks , 1992, SIGCOMM '92.

[19]  J. V. D. Heuvel,et al.  Graph labeling and radio channel assignment , 1998 .

[20]  Subramanian Ramanathan,et al.  Scheduling algorithms for multihop radio networks , 1993, TNET.

[21]  J. Georges,et al.  On the size of graphs labeled with condition at distance two , 1996 .

[22]  John P. Georges,et al.  On the lambda-Number of Qn and Related Graphs , 1995, SIAM J. Discret. Math..

[23]  Subramanian Ramanathan,et al.  Scheduling algorithms for multi-hop radio networks , 1992, SIGCOMM 1992.