Infrared polarimetry of Mrk 231: scattering off hot dust grains in the central core

We present high-angular (0.17−0.35 arcsec) resolution imaging polarimetric observations of Mrk 231 in the 3.1 µm filter using MMT-Pol on the 6.5-m MMT, and in the 8.7 µm, 10.3 µm, and 11.6 µm filters using CanariCam on the 10.4-m Gran Telescopio CANARIAS. In combination with already published observations, we compile the 1−12 µm total and polarized nuclear spectral energy distribution (SED). The total flux SED in the central 400 pc is explained as the combination of 1) a hot (731 ± 4 K) dusty structure, directly irradiated by the central engine, which is at 1.6 ± 0.1 pc away and attributed to be in the pc-scale polar region, 2) an optically-thick, smooth and disk-like dusty structure (‘torus’) with an inclination of 48 ± 23◦ surrounding the central engine, and 3) an extinguished (AV = 36 ± 5 mag) starburst component. The polarized SED decreases from 0.77 ± 0.14 per cent at 1.2 µm to 0.31 ± 0.15 per cent at 11.6 µm and follows a power-law function, λ ∼0.57. The polarization angle remains constant (∼108◦ ) in the 1−12 µm wavelength range. The dominant polarization mechanism is explained as scattering off hot dust grains in the pc-scale polar regions.

[1]  P. Roche,et al.  The complex evolutionary paths of local infrared bright galaxies: a high-angular resolution mid-infrared view , 2016, 1608.08751.

[2]  S. Veilleux,et al.  Another piece of the puzzle: The fast H I outflow in Mrk 231 , 2016, 1606.01640.

[3]  S. Veilleux,et al.  THE COMPLETE ULTRAVIOLET SPECTRUM OF THE ARCHETYPAL “WIND-DOMINATED” QUASAR MRK 231: ABSORPTION AND EMISSION FROM A HIGH-SPEED DUSTY NUCLEAR OUTFLOW , 2016, 1605.00665.

[4]  P. Roche,et al.  Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068 , 2016, 1603.01265.

[5]  E. Lopez-Rodriguez Dichroic polarization at mid-infrared wavelengths: a Bayesian approach , 2015, 1510.06741.

[6]  P. Roche,et al.  A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam , 2015, 1510.02631.

[7]  E. Lopez-Rodriguez,et al.  PROBING HYPERGIANT MASS LOSS WITH ADAPTIVE OPTICS IMAGING AND POLARIMETRY IN THE INFRARED: MMT-Pol AND LMIRCam OBSERVATIONS OF IRC +10420 AND VY CANIS MAJORIS , 2015, 1505.04328.

[8]  S. Gallagher,et al.  Investigating the structure of the windy torus in quasars , 2015, 1505.04219.

[9]  S. Veilleux,et al.  The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow , 2015, 1503.01481.

[10]  P. Esquej,et al.  RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION , 2015, 1502.05820.

[11]  A. Ramos,et al.  THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI , 2015, 1501.06584.

[12]  Enzo Pascale,et al.  Data analysis pipeline for EChO end-to-end simulations , 2014, 1402.4408.

[13]  E. Perlman,et al.  POLARIZED MID-INFRARED SYNCHROTRON EMISSION IN THE CORE OF CYGNUS A , 2014, 1407.6365.

[14]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[15]  M. Imanishi,et al.  SUBARU ADAPTIVE-OPTICS HIGH-SPATIAL-RESOLUTION INFRARED K- AND L′-BAND IMAGING SEARCH FOR DEEPLY BURIED DUAL AGNs IN MERGING GALAXIES , 2013, 1312.2031.

[16]  MPE,et al.  DUST IN THE POLAR REGION AS A MAJOR CONTRIBUTOR TO THE INFRARED EMISSION OF ACTIVE GALACTIC NUCLEI , 2013, 1306.4312.

[17]  C. Baugh,et al.  Single-colour diagnostics of the mass-to-light ratio - I. Predictions from galaxy formation models , 2013, 1304.4421.

[18]  P. Lira,et al.  MODELING THE NUCLEAR INFRARED SPECTRAL ENERGY DISTRIBUTION OF TYPE II ACTIVE GALACTIC NUCLEI , 2013, 1301.7000.

[19]  G. Barentsen,et al.  Bayesian inference of T Tauri star properties using multi-wavelength survey photometry , 2012, 1211.6108.

[20]  S. Veilleux,et al.  THE SURPRISING ABSENCE OF ABSORPTION IN THE FAR-ULTRAVIOLET SPECTRUM OF Mrk 231 , 2012, 1212.2401.

[21]  Konrad Tristram,et al.  PARSEC-SCALE DUST EMISSION FROM THE POLAR REGION IN THE TYPE 2 NUCLEUS OF NGC 424 , 2012, 1206.4307.

[22]  R. Neri,et al.  Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind , 2011, 1111.6762.

[23]  H. Netzer,et al.  Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei , 2011, 1110.5326.

[24]  M. Baes,et al.  Three-dimensional radiative transfer modeling of AGN dusty tori as a clumpy two-phase medium , 2011, 1109.1286.

[25]  University of Crete,et al.  TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY , 2011, 1105.2368.

[26]  N. A. Levenson,et al.  TESTING THE UNIFICATION MODEL FOR ACTIVE GALACTIC NUCLEI IN THE INFRARED: ARE THE OBSCURING TORI OF TYPE 1 AND 2 SEYFERTS DIFFERENT? , 2011, 1101.3335.

[27]  T. Nakagawa,et al.  AKARI IRC INFRARED 2.5–5 μm SPECTROSCOPY OF A LARGE SAMPLE OF LUMINOUS INFRARED GALAXIES , 2010, 1008.1585.

[28]  N. Butler,et al.  The long rapid decay phase of the extended emission from the short GRB 080503 , 2009, 0911.1503.

[29]  M. Kishimoto,et al.  The dusty heart of nearby active galaxies , 2010 .

[30]  Takayuki Kotani,et al.  Exploring the inner region of type 1 AGNs with the Keck interferometer , 2009, 0911.0666.

[31]  S. Hoenig,et al.  The dusty heart of nearby active galaxies. II. From clumpy torus models to physical properties of dust around active galactic nuclei , 2009, 0909.4539.

[32]  M. Elitzur,et al.  DUSTY STRUCTURE AROUND TYPE-I ACTIVE GALACTIC NUCLEI: CLUMPY TORUS NARROW-LINE REGION AND NEAR-NUCLEUS HOT DUST , 2009, 0907.1654.

[33]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[34]  J. M. Rodríguez Espinosa,et al.  THE INFRARED NUCLEAR EMISSION OF SEYFERT GALAXIES ON PARSEC SCALES: TESTING THE CLUMPY TORUS MODELS , 2009, Proceedings of the International Astronomical Union.

[35]  Glenn D. Boreman,et al.  Birefringence and transmission of an antireflection-coated sulfur-free cadmium selenide Wollaston prism at 30K , 2008 .

[36]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.

[37]  Zeljko Ivezic,et al.  AGN Dusty Tori. I. Handling of Clumpy Media , 2008, 0806.0511.

[38]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[39]  Mario Schweitzer,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars , 2007, 0706.0818.

[40]  C. Leitherer,et al.  An Atlas of the Circumnuclear Regions of 75 Seyfert Galaxies in the Near-Ultraviolet with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0704.3617.

[41]  R. Siebenmorgen,et al.  Dust in starburst nuclei and ULIRGs - SED models for observers , 2006, astro-ph/0606444.

[42]  Paul S. Smith,et al.  Variation in the Scattering Shroud Surrounding Markarian 231 , 2005, astro-ph/0506616.

[43]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[44]  G. Neugebauer,et al.  High Spatial Resolution Hubble Space Telescope NICMOS Observations of Markarian 231 , 2004, astro-ph/0407406.

[45]  C. Lonsdale,et al.  VLBI Imaging of Luminous Infrared Galaxies: Active Galactic Nucleus Cores in Markarian 231, UGC 5101, and NGC 7469 , 2003, astro-ph/0304335.

[46]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[47]  Ž. Ivezić,et al.  Dust Emission from Active Galactic Nuclei , 2002, astro-ph/0202405.

[48]  R. Siebenmorgen,et al.  Mid infrared polarisation of Ultraluminous Infrared Galaxies , 2001, astro-ph/0108317.

[49]  G. Rieke,et al.  The Multitude of Unresolved Continuum Sources at 1.6 Microns in Hubble Space Telescope Images of Seyfert Galaxies , 1999, astro-ph/9912452.

[50]  C. H. Smith,et al.  Studies in mid-infrared spectropolarimetry - II. An atlas of spectra , 2000 .

[51]  J. Hough,et al.  Highly polarized structures in the near‐nuclear regions of Cygnus A: intrinsic anisotropy within the cones? , 2000, astro-ph/0002179.

[52]  J. Surace,et al.  High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies* , 1999, astro-ph/9911045.

[53]  S. Veilleux,et al.  Optical Spectroscopy of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies , 1999, astro-ph/9904149.

[54]  Roderick Willstrop Astronomical Polarimetry , 1997 .

[55]  Paul S. Smith,et al.  The polarization and ultraviolet spectrum of Markarian 231 , 1995 .

[56]  F. Macchetto,et al.  GALAXIES WITH EXTREME INFRARED AND FE II EMISSION. I: MARKARIAN 231 : THE SIGNATURE OF A YOUNG INFRARED QSO , 1994 .

[57]  J. Arens,et al.  Mid-Infrared Imaging of Markarian 231 and ARP 220 , 1992 .

[58]  T. Jones,et al.  Infrared Polarimetry of Galaxies. I. Infrared Luminous Galaxies , 1989 .

[59]  R. Barvainis,et al.  Hot Dust and the Near-Infrared Bump in the Continuum Spectra of Quasars and Active Galactic Nuclei , 1987 .

[60]  B. Madore,et al.  The IRAS bright galaxy sample. II - The sample and luminosity function , 1987 .

[61]  G. Neugebauer,et al.  The Size of MRK 231 at 10 Microns , 1987 .

[62]  J. Miller,et al.  Spectropolarimetry of Seyfert nuclei. , 1985 .

[63]  C. Foltz,et al.  Echelle spectroscopy of the Seyfert 1 galaxy Markarian 231 , 1985 .

[64]  P. Roche,et al.  8–13 μm spectrophotometry of galaxies – III. The silicate absorption in Markarian 231 , 1983 .

[65]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[66]  W. Sargent,et al.  The remarkable Seyfert galaxy Markarian 231 , 1977 .

[67]  Jeremy Bailey,et al.  Systematic variations in the wavelength dependence of interstellar linear polarization , 1976 .

[68]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[69]  J. Wardle,et al.  The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. , 1974 .