Tight frames for multiscale and multidirectional image analysis

We propose a framework for analyzing and visualizing data at multiple scales and directions by constructing a novel class of tight frames. We describe an elegant way of creating 2D tight frames from 1D sets of orthonormal vectors and show how to exploit the representation redundancy in a computationally efficient manner. Finally, we employ this framework to perform image superresolution via edge detection and characterization.

[1]  M. Asgari,et al.  Frames and bases of subspaces in Hilbert spaces , 2005 .

[2]  A. Aldroubi,et al.  Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(Rd) , 2004, math/0703438.

[3]  Emmanuel J. Candès,et al.  Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.

[4]  J. Benedetto Irregular sampling and frames , 1993 .

[5]  Shayne Waldron,et al.  Tight frames generated by finite nonabelian groups , 2008, Numerical Algorithms.

[6]  Dustin G. Mixon,et al.  Constructing finite frames of a given spectrum and set of lengths , 2011, 1106.0921.

[7]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[8]  Minh N. Do,et al.  Contourlets: a directional multiresolution image representation , 2002, Proceedings. International Conference on Image Processing.

[9]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[10]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[11]  Gary E. Ford,et al.  Directional interpolation of images based on visual properties and rank order filtering , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[12]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[13]  Nate Strawn Geometric structures and optimization on spaces of finite frames , 2011 .

[14]  H. Ogawa,et al.  Pseudoframes for Subspaces with Applications , 2004 .

[15]  S. Waldron,et al.  Tight Frames and Their Symmetries , 2004 .

[16]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[17]  W. Czaja Remarks on Naimark’s duality , 2004, math/0410348.

[18]  G. Easley,et al.  Directional Wavelets and a Wavelet Variogram for Two-Dimensional Data , 2009 .

[19]  Peyman Milanfar,et al.  Clustering-Based Denoising With Locally Learned Dictionaries , 2009, IEEE Transactions on Image Processing.

[20]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[21]  Sheila S. Hemami,et al.  Regularity-preserving image interpolation , 1999, IEEE Trans. Image Process..

[22]  Stéphane Mallat,et al.  Super-Resolution With Sparse Mixing Estimators , 2010, IEEE Transactions on Image Processing.

[23]  Yonina C. Eldar,et al.  Geometrically uniform frames , 2001, IEEE Trans. Inf. Theory.

[24]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[25]  Georg Zimmermann,et al.  Normalized Tight Frames in Finite Dimensions , 2001 .

[26]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[27]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[28]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[29]  Margaret A. Oliver,et al.  Wavelets and the Generalization of the Variogram , 2004 .

[30]  Truong Q. Nguyen,et al.  Adaptive Directional Wavelet Transform Based on Directional Prefiltering , 2010, IEEE Transactions on Image Processing.

[31]  Xiangjun Zhang,et al.  Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation , 2008, IEEE Transactions on Image Processing.

[32]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Baltasar Beferull-Lozano,et al.  Discrete multidirectional wavelet bases , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[34]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[35]  Laurent Demanet,et al.  Curvelets and wave atoms for mirror-extended images , 2007, SPIE Optical Engineering + Applications.

[36]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[37]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[38]  Wenchang Sun G-frames and G-Riesz Bases ⁄ , 2005, math/0508104.

[39]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[40]  Ping Wah Wong,et al.  Edge-directed interpolation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[41]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .

[42]  Yonina C. Eldar,et al.  Oblique dual frames and shift-invariant spaces , 2004 .

[43]  Minh N. Do,et al.  Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.

[44]  Deguang Han,et al.  Frames for Undergraduates , 2007 .

[45]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[46]  Jelena Kovacevic,et al.  An Introduction to Frames , 2008, Found. Trends Signal Process..