Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2

[1]  A. Varki,et al.  Are sialic acids involved in COVID-19 pathogenesis? , 2021, Glycobiology.

[2]  S. Stowell,et al.  The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A , 2021, Blood Advances.

[3]  E. Gordeeva,et al.  Recombinant SARS-CoV-2 S Protein Binds to Glycans of the Lactosamine Family in vitro , 2021, Biochemistry (Moscow).

[4]  H. Achdout,et al.  Glucosylceramide synthase inhibitors prevent replication of SARS-CoV-2 and influenza virus , 2021, Journal of Biological Chemistry.

[5]  S. Farhadian,et al.  Neuroinvasion of SARS-CoV-2 in human and mouse brain , 2021, The Journal of experimental medicine.

[6]  R. Goldman,et al.  N- and O-Glycosylation of the SARS-CoV-2 Spike Protein. , 2021, Analytical chemistry.

[7]  M. Crispin,et al.  Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition , 2020, Journal of Molecular Biology.

[8]  S. Neelamegham,et al.  Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration , 2020, eLife.

[9]  S. Sipione,et al.  Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications , 2020, Frontiers in Neuroscience.

[10]  Matthew S Macauley,et al.  Mass Spectrometry-based Shotgun Glycomics for Discovery of Natural Ligands of Glycan-binding Proteins. , 2020, Analytical chemistry.

[11]  Benjamin P. Kellman,et al.  SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2 , 2020, Cell.

[12]  H. Turner,et al.  Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins , 2020, bioRxiv.

[13]  Jeremy L. Praissman,et al.  Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor , 2020, Cell Host and Microbe.

[14]  Jingqiu Cheng,et al.  Mucin-type O-glycosylation Landscapes of SARS-CoV-2 Spike Proteins , 2020, bioRxiv.

[15]  Paul S. Kwon,et al.  Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro , 2020, Cell Discovery.

[16]  C. Rice,et al.  Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses , 2020, The Journal of experimental medicine.

[17]  I. Kaltashov,et al.  The Utility of Native MS for Understanding the Mechanism of Action of Repurposed Therapeutics in COVID-19: Heparin as a Disruptor of the SARS-CoV-2 Interaction with Its Host Cell Receptor , 2020, Analytical chemistry.

[18]  Oliver C. Grant,et al.  Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions , 2020, Antiviral Research.

[19]  Gavin C Barnard,et al.  Development of a high cell density transient CHO platform yielding mAb titers greater than 2 g/L in only 7 days , 2020, Biotechnology progress.

[20]  M. Giannì,et al.  Human Sialome and Coronavirus Disease-2019 (COVID-19) Pandemic: An Understated Correlation? , 2020, Frontiers in Immunology.

[21]  R. Field,et al.  The SARS-COV-2 Spike Protein Binds Sialic Acids and Enables Rapid Detection in a Lateral Flow Point of Care Diagnostic Device , 2020, ACS central science.

[22]  I. Kaltashov,et al.  The utility of native MS for understanding the mechanism of action of repurposed therapeutics in COVID-19: heparin as a disruptor of the SARS-CoV-2 interaction with its host cell receptor , 2020, bioRxiv.

[23]  C. Rice,et al.  Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses , 2020, bioRxiv.

[24]  Bo Qin,et al.  Binding of the SARS-CoV-2 spike protein to glycans , 2020, bioRxiv.

[25]  M. Wolfert,et al.  SARS-CoV-2 spike protein binds heparan sulfate in a length- and sequence-dependent manner , 2020, bioRxiv.

[26]  Jian Chen,et al.  Association between ABO blood groups and risk of SARS‐CoV‐2 pneumonia , 2020, British journal of haematology.

[27]  Asif Shajahan,et al.  Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2 , 2020, Glycobiology.

[28]  Kaijun Jiang,et al.  SARS‐CoV‐2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup , 2020, Current protocols in microbiology.

[29]  Gaurav Agarwal,et al.  GlyGen: Computational and Informatics Resources for Glycoscience. , 2020, Glycobiology.

[30]  K. Khoo,et al.  Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans , 2020, Proceedings of the National Academy of Sciences.

[31]  Matthew S Macauley,et al.  A quantitative, high-throughput method identifies protein–glycan interactions via mass spectrometry , 2019, Communications Biology.

[32]  Alexandra C Walls,et al.  Structural basis for human coronavirus attachment to sialic acid receptors , 2019, Nature Structural & Molecular Biology.

[33]  P. Kitov,et al.  Sliding Window Adduct Removal Method (SWARM) for Enhanced Electrospray Ionization Mass Spectrometry Binding Data , 2019, Journal of The American Society for Mass Spectrometry.

[34]  A. Thompson,et al.  Virus recognition of glycan receptors , 2019, Current Opinion in Virology.

[35]  Xi Jiang,et al.  Quantifying the binding stoichiometry and affinity of histo-blood group antigen oligosaccharides for human noroviruses , 2018, Glycobiology.

[36]  M. Maginnis Virus–Receptor Interactions: The Key to Cellular Invasion , 2018, Journal of Molecular Biology.

[37]  M. Tortorici,et al.  Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein , 2017, Proceedings of the National Academy of Sciences.

[38]  Ryan J. Weiss,et al.  Targeting heparin and heparan sulfate protein interactions. , 2017, Organic & biomolecular chemistry.

[39]  Pauline M Rudd,et al.  Comprehensive Profiling of Glycosphingolipid Glycans Using a Novel Broad Specificity Endoglycoceramidase in a High-Throughput Workflow. , 2016, Analytical chemistry.

[40]  A. Boraston,et al.  Protein-glycolipid interactions studied in vitro using ESI-MS and nanodiscs: insights into the mechanisms and energetics of binding. , 2015, Analytical chemistry.

[41]  D. DiMaio,et al.  The Greater Affinity of JC Polyomavirus Capsid for α2,6-Linked Lactoseries Tetrasaccharide c than for Other Sialylated Glycans Is a Major Determinant of Infectivity , 2015, Journal of Virology.

[42]  K. Pyrć,et al.  Human Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target Cells , 2014, Journal of Virology.

[43]  T. Lowary,et al.  Mycobacterial Phenolic Glycolipids with a Simplified Lipid Aglycone Modulate Cytokine Levels through Toll‐Like Receptor 2 , 2013, Chembiochem : a European journal of chemical biology.

[44]  Ivo F. Sbalzarini,et al.  Receptor Concentration and Diffusivity Control Multivalent Binding of Sv40 to Membrane Bilayers , 2013, PLoS Comput. Biol..

[45]  H. Klenk,et al.  Sialic Acid Receptors of Viruses , 2013, Topics in current chemistry.

[46]  Stuart M Haslam,et al.  Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. , 2012, Nature chemical biology.

[47]  P. Schnier,et al.  Reliable Determinations of Protein–Ligand Interactions by Direct ESI-MS Measurements. Are We There Yet? , 2012, Journal of The American Society for Mass Spectrometry.

[48]  J. Klassen,et al.  Applications of a catch and release electrospray ionization mass spectrometry assay for carbohydrate library screening. , 2012, Analytical chemistry.

[49]  T. Lowary,et al.  Synthesis and NMR studies on the ABO histo-blood group antigens: synthesis of type III and IV structures and NMR characterization of type I-VI antigens. , 2011, Carbohydrate research.

[50]  T. Lowary,et al.  Synthesis of ABO histo-blood group type I and II antigens. , 2010, Carbohydrate research.

[51]  J. Turnbull,et al.  Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies. , 2009, Journal of the American Chemical Society.

[52]  T. Lowary,et al.  Synthesis of ABO Histo-Blood Group Type V and VI Antigens* , 2009 .

[53]  Alessio Ceroni,et al.  GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. , 2008, Journal of proteome research.

[54]  A. Varki,et al.  Diversity in cell surface sialic acid presentations: implications for biology and disease , 2007, Laboratory Investigation.

[55]  J. Klassen,et al.  Method for distinguishing specific from nonspecific protein-ligand complexes in nanoelectrospray ionization mass spectrometry. , 2006, Analytical chemistry.

[56]  G. Air,et al.  Binding of influenza viruses to sialic acids: reassortant viruses with A/NWS/33 hemagglutinin bind to alpha2,8-linked sialic acid. , 2004, Virology.

[57]  S. Sligar,et al.  Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. , 2004, Journal of the American Chemical Society.

[58]  R. Dwek,et al.  A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. , 1996, Analytical biochemistry.