Contemporary Mathematics Theory and Computations of Some Inverse Eigenvalue Problems for the Quadratic Pencil
暂无分享,去创建一个
[1] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[2] Yitshak M. Ram,et al. Pole assignment for the vibrating rod , 1998 .
[3] B. Datta,et al. ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .
[4] Youcef Saad. A Projection Method for Partial Pole Assignment in Linear State Feedback. , 1986 .
[5] Biswa Nath Datta,et al. Numerically robust pole assignment for second-order systems , 1996 .
[6] A. Kress,et al. Eigenstructure assignment using inverse eigenvalue methods , 1995 .
[7] S. Elhay,et al. An algorithm for the partial multi-input pole assignment problem of a second-order control system , 1996, Proceedings of 35th IEEE Conference on Decision and Control.
[8] N. Nichols,et al. Robust pole assignment in linear state feedback , 1985 .
[9] B.N. Datta,et al. Multi-input partial eigenvalue assignment for the symmetric quadratic pencil , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[10] Beresford N. Parlett,et al. Use of indefinite pencils for computing damped natural modes , 1990 .
[11] B. Datta. Numerical methods for linear control systems : design and analysis , 2004 .
[12] Biswa Nath Datta,et al. PARTIAL EIGENSTRUCTURE ASSIGNMENT FOR THE QUADRATIC PENCIL , 2000 .