An FE2-X1 approach for multiscale localization phenomena
暂无分享,去创建一个
[1] Ted Belytschko,et al. Conservation properties of the bridging domain method for coupled molecular/continuum dynamics , 2008 .
[2] Jacques-Louis Lions,et al. Nonlinear partial differential equations and their applications , 1998 .
[3] Vinh Phu Nguyen,et al. On the existence of representative volumes for softening quasi-brittle materials – A failure zone averaging scheme , 2010 .
[4] V. Kouznetsova,et al. Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .
[5] Ted Belytschko,et al. Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .
[6] Philippe H. Geubelle,et al. Multiscale cohesive failure modeling of heterogeneous adhesives , 2008 .
[7] I. Gitman. Representative volumes and multi-scale modelling of quasi-brittle materials , 2006 .
[8] Marc Bonnet,et al. Inverse problems in elasticity , 2005 .
[9] Daniel Rixen,et al. Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials , 2011 .
[10] Mgd Marc Geers,et al. Novel boundary conditions for strain localization analyses in microstructural volume elements , 2012 .
[11] Udo Nackenhorst,et al. An adaptive FE–MD model coupling approach , 2010 .
[12] Barbara I. Wohlmuth,et al. Mortar Finite Elements for Interface Problems , 2004, Computing.
[13] M. Bonnet,et al. Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .
[14] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[15] Lennart Ljung,et al. Nonlinear Black Box Modeling in System Identification , 1995 .
[16] R. Hill. Elastic properties of reinforced solids: some theoretical principles , 1963 .
[17] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[18] Guillaume Rateau,et al. The Arlequin method as a flexible engineering design tool , 2005 .
[19] D. Rixen,et al. FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .
[20] L. J. Sluys,et al. Coupled-volume multi-scale modelling of quasi-brittle material , 2008 .
[21] V. Kouznetsova,et al. Enabling microstructure-based damage and localization analyses and upscaling , 2011 .
[22] S. Eckardt,et al. A mesoscale model for concrete to simulate mechanical failure , 2011 .
[23] Somnath Ghosh,et al. A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .
[24] S. Eckardt,et al. Adaptive Damage Simulation of Concrete Using Heterogeneous Multiscale Models , 2008 .
[25] Ted Belytschko,et al. Multiscale aggregating discontinuities method for micro–macro failure of composites , 2009 .
[26] Carsten Könke,et al. Coupling of scales in a multiscale simulation using neural networks , 2008 .
[27] John E. Mottershead,et al. Finite Element Model Updating in Structural Dynamics , 1995 .
[28] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[29] James G. Boyd,et al. Micromechanics and homogenization of inelastic composite materials with growing cracks , 1996 .
[30] Vinh Phu Nguyen,et al. Homogenization-based multiscale crack modelling: from micro diffusive damage to macro cracks , 2011 .
[31] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[32] Jacob Fish,et al. Multiple scale eigendeformation-based reduced order homogenization , 2009 .
[33] René de Borst,et al. Computational homogenization for adhesive and cohesive failure in quasi‐brittle solids , 2010 .
[34] Zvi Hashin,et al. The Elastic Moduli of Heterogeneous Materials , 1962 .
[35] Carsten Könke,et al. An inverse parameter identification procedure assessing the quality of the estimates using Bayesian neural networks , 2011, Appl. Soft Comput..
[36] Carsten Könke,et al. Neural networks as material models within a multiscale approach , 2009 .
[37] Jörg F. Unger,et al. Multiscale Modeling of Concrete , 2011 .
[38] Christian Miehe,et al. Homogenization and two‐scale simulations of granular materials for different microstructural constraints , 2010 .
[39] Harm Askes,et al. Representative volume: Existence and size determination , 2007 .
[40] Ted Belytschko,et al. Multiscale aggregating discontinuities: A method for circumventing loss of material stability , 2008 .
[41] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[42] Frédéric Feyel,et al. Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .