Multiple-Output Quantile Regression

[1]  Elliptical multiple-output quantile regression and convex optimization , 2015 .

[2]  Surfaces quantile : propriétés, convergences et applications , 2015 .

[3]  M. Siman,et al.  On generalized elliptical quantiles in the nonlinear quantile regression setup , 2015 .

[4]  V. Chernozhukov,et al.  Monge-Kantorovich Depth, Quantiles, Ranks and Signs , 2014, 1412.8434.

[5]  G. Carlier,et al.  Vector Quantile Regression , 2014 .

[6]  Miroslav Siman,et al.  On elliptical quantiles in the quantile regression setup , 2013, J. Multivar. Anal..

[7]  Davy Paindaveine,et al.  Computing multiple-output regression quantile regions from projection quantiles , 2011, Computational Statistics.

[8]  Linglong Kong,et al.  Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.

[9]  I. McKeague,et al.  Analyzing growth trajectories , 2011, Journal of Developmental Origins of Health and Disease.

[10]  Miroslav Siman,et al.  On Exact Computation of Some Statistics Based on Projection Pursuit in a General Regression Context , 2011, Commun. Stat. Simul. Comput..

[11]  Miroslav Siman,et al.  On directional multiple-output quantile regression , 2011, J. Multivar. Anal..

[12]  R. L. Winkler,et al.  On multivariate quantiles under partial orders , 2009, 0912.5489.

[13]  Yuzhi Cai Multivariate quantile function models , 2010 .

[14]  Estimation de quantiles géométriques conditionnels et non conditionnels , 2009 .

[15]  Ying Wei An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts , 2008 .

[16]  J. De Gooijer,et al.  On the U-Th Geometric Conditional Quantile , 2004 .

[17]  B. Chakraborty On multivariate quantile regression , 2003 .

[18]  I. Mizera On depth and deep points: a calculus , 2002 .

[19]  R. Serfling A Depth Function and a Scale Curve Based on Spatial Quantiles , 2002 .

[20]  W. Gilchrist,et al.  Statistical Modelling with Quantile Functions , 2000 .

[21]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[22]  V. Koltchinskii M-estimation, convexity and quantiles , 1997 .

[23]  Probal Chaudhuri,et al.  On a transformation and re-transformation technique for constructing an affine equivariant multivariate median , 1996 .

[24]  P. Chaudhuri On a geometric notion of quantiles for multivariate data , 1996 .

[25]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[26]  J. Haldane Note on the median of a multivariate distribution , 1948 .