A scaling limit for the length of the longest cycle in a sparse random digraph

We discuss the length L→c,n of the longest directed cycle in the sparse random digraph Dn,p,p=c/n , c constant. We show that for large c there exists a function f→(c) such that L→c,n/n→f→(c) a.s. The function f→(c)=1−∑k=1∞pk(c)e−kc where pk is a polynomial in c . We are only able to explicitly give the values p1,p2 , although we could in principle compute any pk .

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[3]  Alan M. Frieze,et al.  An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three , 2012, Random Struct. Algorithms.

[4]  Benny Sudakov,et al.  Longest cycles in sparse random digraphs , 2011, Random Struct. Algorithms.

[5]  B. Pittel,et al.  On a sparse random graph with minimum degree three: Likely Pósa sets are large , 2011, 1107.4944.

[6]  David Gamarnik,et al.  Combinatorial approach to the interpolation method and scaling limits in sparse random graphs , 2009, STOC '10.

[7]  A. Frieze,et al.  The Size of the Largest Strongly Connected Component of a Random Digraph with a Given Degree Sequence , 2004, Combinatorics, Probability and Computing.

[8]  Alan M. Frieze,et al.  Perfect matchings in random graphs with prescribed minimal degree , 2003, SODA '03.

[9]  Alan M. Frieze,et al.  Hamilton cycles in random graphs and directed graphs , 2000, Random Struct. Algorithms.

[10]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[11]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[12]  Alan M. Frieze,et al.  Hamilton Cycles in a Class of Random Directed Graphs , 1994, J. Comb. Theory, Ser. B.

[13]  W. C. Stephen Suen On large induced trees and long induced paths in sparse random graphs , 1992, J. Comb. Theory, Ser. B.

[14]  Vasek Chvátal,et al.  Almost All Graphs with 1.44n Edges are 3-Colorable , 1991, Random Struct. Algorithms.

[15]  Boris G. Pittel,et al.  On Tree Census and the Giant Component in Sparse Random Graphs , 1990, Random Struct. Algorithms.

[16]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[17]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[18]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[19]  Béla Bollobás,et al.  On matchings and hamiltonian cycles in random graphs Annals of Discrete Mathematics 28 , 1985 .

[20]  Alan M. Frieze,et al.  Hamiltonian cycles in random regular graphs , 1984, J. Comb. Theory, Ser. B.

[21]  B. Bollobás The evolution of random graphs , 1984 .

[22]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[23]  T.I. Fenner,et al.  On the existence of Hamiltonian cycles in a class of random graphs , 1983, Discret. Math..

[24]  Béla Bollobás Long paths in sparse random graphs , 1982, Comb..

[25]  János Komlós,et al.  The longest path in a random graph , 1981, Comb..

[26]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[27]  C. McDiarmid Clutter percolation and random graphs , 1980 .

[28]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[29]  P. Erdös Problems and Results on Finite and Infinite Graphs , 1975 .

[30]  C. McDiarmid Concentration , 1862, The Dental register.