First results from the IllustrisTNG simulations: radio haloes and magnetic fields

We introduce the IllustrisTNG project, a new suite of cosmological magnetohydrodynamical simulations performed with the moving-mesh code AREPO employing an updated Illustris galaxy formation model. Here we focus on the general properties of magnetic fields and the diffuse radio emission in galaxy clusters. Magnetic fields are prevalent in galaxies, and their build-up is closely linked to structure formation. We find that structure formation amplifies the initial seed fields ($10^{-14}$ comoving Gauss) to the values observed in low-redshift galaxies ($1-10\,\mu{\rm G}$). The magnetic field topology is closely connected to galaxy morphology such that irregular fields are hosted by early-type galaxies, while large-scale, ordered fields are present in disc galaxies. Using two simple models for the energy distribution of relativistic electrons we predict the diffuse radio emission of $280$ clusters with a baryonic mass resolution of $1.1\times 10^{7}\,{\rm M_{\odot}}$, and generate mock observations for VLA, LOFAR, ASKAP and SKA. Our simulated clusters show extended radio emission, whose detectability correlates with their virial mass. We reproduce the observed scaling relations between total radio power and X-ray emission, $M_{500}$, and the Sunyaev-Zel'dovich $Y_{\rm 500}$ parameter. The radio emission surface brightness profiles of our most massive clusters are in reasonable agreement with VLA measurements of Coma and Perseus. Finally, we discuss the fraction of detected extended radio haloes as a function of virial mass and source count functions for different instruments. Overall our results agree encouragingly well with observations, but a refined analysis requires a more sophisticated treatment of relativistic particles in large-scale galaxy formation simulations.

[1]  F. Vazza,et al.  Resolved magnetic dynamo action in the simulated intracluster medium , 2017, 1711.02673.

[2]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[3]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[4]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[5]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[6]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[7]  G. Brunetti,et al.  Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration , 2017, 1707.02085.

[8]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies - II. The saturation phase and the final magnetic configuration , 2017, 1704.05845.

[9]  Federico Marinacci,et al.  Magnetic field formation in the Milky Way like disc galaxies of the Auriga project , 2017, 1701.07028.

[10]  M. Markevitch,et al.  Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters , 2017, 1701.01364.

[11]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[12]  C. Simpson,et al.  Simulating cosmic ray physics on a moving mesh , 2016, 1604.07399.

[13]  Volker Springel,et al.  Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh , 2016, 1604.08587.

[14]  C. Gheller,et al.  Constraining the efficiency of cosmic ray acceleration by cluster shocks , 2016, 1603.02688.

[15]  Federico Marinacci,et al.  Accurately simulating anisotropic thermal conduction on a moving mesh , 2015, 1512.03053.

[16]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[17]  M. Razzano,et al.  SEARCH FOR GAMMA-RAY EMISSION FROM THE COMA CLUSTER WITH SIX YEARS OF FERMI-LAT DATA , 2015, 1507.08995.

[18]  G. Stinson,et al.  Galaxy formation with local photoionization feedback – II. Effect of X-ray emission from binaries and hot gas , 2015, 1505.06202.

[19]  V. Springel,et al.  Zooming in on accretion – I. The structure of halo gas , 2015, 1503.02665.

[20]  Cfa,et al.  The large-scale properties of simulated cosmological magnetic fields , 2015, 1506.00005.

[21]  M. Jarvis,et al.  Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14) , 2015 .

[22]  C. Pfrommer,et al.  Turbulence and particle acceleration in giant radio haloes: the origin of seed electrons , 2015, 1503.07870.

[23]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[24]  M. Markevitch,et al.  TESTING SECONDARY MODELS FOR THE ORIGIN OF RADIO MINI-HALOS IN GALAXY CLUSTERS , 2014, 1403.6743.

[25]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[26]  C. Gheller,et al.  On the amplification of magnetic fields in cosmic filaments and galaxy clusters , 2014, 1409.2640.

[27]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[28]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[29]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[30]  C. Gheller,et al.  Simulations of cosmic rays in large-scale structures: numerical and physical effects , 2014, 1401.4454.

[31]  F. Vazza,et al.  Do radio relics challenge diffusive shock acceleration , 2013, 1310.5707.

[32]  Heidelberg,et al.  On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions , 2012, 1311.4795.

[33]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[34]  A. Basu,et al.  Magnetic fields in nearby normal galaxies: energy equipartition , 2013, 1305.2746.

[35]  F. Guo,et al.  Cosmic ray streaming in clusters of galaxies , 2013, 1303.4746.

[36]  G. Pratt,et al.  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 04/17/13 REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS , 2022 .

[37]  C. Pfrommer,et al.  Giant radio relics in galaxy clusters: reacceleration of fossil relativistic electrons? , 2013, 1301.5644.

[38]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[39]  K. Dolag,et al.  Rise and fall of radio haloes in simulated merging galaxy clusters , 2012, 1211.3337.

[40]  R. Cen,et al.  COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS , 2012, 1209.2737.

[41]  A. Falcone,et al.  CONSTRAINTS ON COSMIC RAYS, MAGNETIC FIELDS, AND DARK MATTER FROM GAMMA-RAY OBSERVATIONS OF THE COMA CLUSTER OF GALAXIES WITH VERITAS AND FERMI , 2012, 1208.0676.

[42]  P. Temi,et al.  Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies , 2012, 1202.6054.

[43]  Andreas Bauer,et al.  Magnetohydrodynamics on an unstructured moving grid , 2011, 1108.1792.

[44]  D. Porter,et al.  MHD Turbulence Simulation in a Cosmic Structure Context , 2011, 1108.1369.

[45]  J. Conway,et al.  LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters , 2011, 1107.1606.

[46]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[47]  E. Zweibel Magnetic Fields in Galaxies , 2010, Proceedings of the International Astronomical Union.

[48]  Michael E. Anderson,et al.  DO HOT HALOS AROUND GALAXIES CONTAIN THE MISSING BARYONS? , 2010, 1003.3273.

[49]  C. Pfrommer,et al.  Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution , 2010, 1001.5023.

[50]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[51]  Joeri van Leeuwen,et al.  ISKAF2010 Science Meeting , 2010 .

[52]  T. Ensslin,et al.  Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio haloes and relics with predictions of the γ-ray emission , 2007, 0707.1707.

[53]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[54]  R. Ekers,et al.  Faraday Rotation Measures through the Cores of Southern Galaxy Clusters , 2004, astro-ph/0411045.

[55]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[56]  Astrophysics,et al.  Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies , 1999, astro-ph/9905122.

[57]  C. Sarazin The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission , 1999, astro-ph/9901061.

[58]  D. Lindley,et al.  High-Energy Astrophysics , 2009, Undergraduate Lecture Notes in Physics.

[59]  G. Giovannini,et al.  The halo radio source Coma C and the origin of halo sources , 1993 .

[60]  K.-T. Kim,et al.  Detection of excess rotation measure due to intracluster magnetic fields in clusters of galaxies , 1991 .

[61]  H. S. Ghataure,et al.  The radio structure of NGC 1275 , 1990 .

[62]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[63]  W. Priester,et al.  Extragalactic radio sources , 1965 .