CBIR Using Local and Global Properties of Image Sub-blocks

This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation and finding the corner density in each partition. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). Euclidean distance measure is used for computing the distance between the features of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.

[1]  Bertrand Zavidovique,et al.  Content based image retrieval using motif cooccurrence matrix , 2004, Image Vis. Comput..

[2]  B. S. Manjunath,et al.  Introduction to mpeg-7 , 2002 .

[3]  D. B. Rao,et al.  CTDCIRS: Content based Image Retrieval System based on Dominant Color and Texture Features , 2011 .

[4]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[6]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[8]  A. K. Majumder,et al.  International Journal of Advanced Science and Technology , 2013 .

[9]  R. P. Maheshwari,et al.  Color and Texture Features for Image Indexing and Retrieval , 2009, 2009 IEEE International Advance Computing Conference.

[10]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[11]  Yo-Ping Huang,et al.  An Efficient and Flexible Matching Strategy for Content-based Image Retrieval , 2010 .

[12]  Romain Murenzi,et al.  Fast texture database retrieval using extended fractal features , 1997, Electronic Imaging.

[13]  Sarah Corona Berkin Image and Vision , 2001 .

[14]  James Ze Wang,et al.  Real-Time Computerized Annotation of Pictures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Clement H. C. Leung Visual Information Systems , 1997, Lecture Notes in Computer Science.

[16]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Ju-Chin Chen,et al.  Region-based image retrieval system with heuristic pre-clustering relevance feedback , 2010, Expert Syst. Appl..

[18]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[19]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[20]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[21]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[22]  John P. Oakley,et al.  Storage and Retrieval for Image and Video Databases , 1993 .

[23]  S. HiremathP.,et al.  Content Based Image Retrieval using Color Boosted Salient Points and Shape features of an image , 2008 .

[24]  A. Govardhan,et al.  CTDCIRS: Content based Image Retrieval System based on Dominant Color and Texture Features , 2011 .

[25]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[26]  Malay Kumar Kundu,et al.  Content-based image retrieval using visually significant point features , 2009, Fuzzy Sets Syst..

[27]  K. Poulose Jacob,et al.  Content Based Image Retrieval Using Low Level Features of Automatically Extracted Regions of Interest , 2013 .

[28]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[29]  Po-Whei Huang,et al.  Image retrieval by texture similarity , 2003, Pattern Recognit..

[30]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[31]  Yixin Chen,et al.  CLUE: cluster-based retrieval of images by unsupervised learning , 2005, IEEE Transactions on Image Processing.

[32]  N. H. C. Yung,et al.  Curvature scale space corner detector with adaptive threshold and dynamic region of support , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[33]  Qi Tian,et al.  Combine user defined region-of-interest and spatial layout for image retrieval , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[34]  Stefan Rüger,et al.  Robust texture features for still-image retrieval , 2005 .