Numerical radius inequalities of $$2\times 2$$ operator matrices

Several upper and lower bounds for the numerical radius of $2 \times 2$ operator matrices are developed which refine and generalize the earlier related bounds. In particular, we show that if $B,C$ are bounded linear operators on a complex Hilbert space, then \begin{eqnarray*}&&\frac{1}{2}\max \left \{ \|B\|, \|C\| \right \}+\frac{1}{4} \left | \|B+C^*\|-\|B-C^*\| \right |&&\leq w \left(\left[\begin{array}{cc} 0&B C&0 \end{array}\right]\right)\\&&\leq \frac{1}{2} \max \left\{\|B\|,\|C\|\right \}+\frac{1}{2}\max \left \{r^{\frac{1}{2}}(|B||C^*|),r^{\frac{1}{2}}(|B^*||C|)\right\}, \end{eqnarray*} where $w(.)$, $r(.)$ and $\|.\|$ are the numerical radius, spectral radius and operator norm of a bounded linear operator, respectively. We also obtain equality conditions for the numerical radius of the operator matrix $\left[\begin{array}{cc} 0&B C&0 \end{array}\right]$. As application of results obtained, we show that if $B,C$ are self-adjoint operators then, $\max \Big \{\|B+C\|^2 , \|B-C\|^2 \Big\}\leq \left \|B^2+C^2 \right \|+2w(|B||C|). $