Impact of the substrate lattice constant on the emission properties of InGaN/GaN short-period superlattices grown by plasma assisted MBE

[1]  M. Sawicka,et al.  Dependence of indium content in monolayer-thick InGaN quantum wells on growth temperature in InxGa1-xN/In0.02Ga0.98N superlattices , 2018, Journal of Applied Physics.

[2]  E. Grzanka,et al.  Peculiarities of plastic relaxation of (0001) InGaN epilayers and their consequences for pseudo-substrate application , 2018, Applied Physics Letters.

[3]  M. Albrecht,et al.  Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells , 2018 .

[4]  J. Carlin,et al.  Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency , 2017 .

[5]  T. Suski,et al.  Band gap engineering of In(Ga)N/GaN short period superlattices , 2017, Scientific Reports.

[6]  E. Grzanka,et al.  Bandgap behavior of InGaN/GaN short period superlattices grown by metal‐organic vapor phase epitaxy , 2017 .

[7]  Eric Guiot,et al.  Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate , 2017 .

[8]  S. Karpov Carrier localization in InGaN by composition fluctuations: implication to the “green gap” , 2017 .

[9]  T. Itoi,et al.  Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature , 2016 .

[10]  Jonathan J. Wierer,et al.  Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers , 2015 .

[11]  X. Kong,et al.  Lattice pulling effect and strain relaxation in axial (In,Ga)N/GaN nanowire heterostructures grown on GaN‐buffered Si(111) substrate , 2015 .

[12]  L. Kirste,et al.  Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter , 2014 .

[13]  Xiaodong Wang,et al.  The discrepancies between theory and experiment in the optical emission of monolayer In(Ga)N quantum wells revisited by transmission electron microscopy , 2014 .

[14]  A. Duff,et al.  Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab initio approach , 2014 .

[15]  H. Grahn,et al.  Spatially resolved investigation of strain and composition variations in (In,Ga)N/GaN epilayers , 2013, 1301.4138.

[16]  E. Calleja,et al.  Optoelectronic Properties of InAlN/GaN Distributed Bragg Reflector Heterostructure Examined by Valence Electron Energy Loss Spectroscopy , 2012, Microscopy and Microanalysis.

[17]  T. Suski,et al.  Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices , 2012 .

[18]  L. L. Li,et al.  Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well. , 2012, Physical review letters.

[19]  Z. R. Wasilewski,et al.  Optically pumped 500 nm InGaN green lasers grown by plasma-assisted molecular beam epitaxy , 2011 .

[20]  B. Delley,et al.  Built-in electric fields and valence band offsets in InN/GaN(0001) superlattices: First-principles investigations , 2011 .

[21]  Md. Rafiqul Islam,et al.  Recent advances in InN‐based solar cells: status and challenges in InGaN and InAlN solar cells , 2010 .

[22]  E. Towe,et al.  Application-oriented nitride substrates: The key to long-wavelength nitride lasers beyond 500 nm , 2010 .

[23]  Z. Wasilewski,et al.  InGaN light emitting diodes for 415 nm–520 nm spectral range by plasma assisted MBE , 2009 .

[24]  T. Moustakas,et al.  Growth and properties of near‐UV light emitting diodes based on InN/GaN quantum wells , 2008 .

[25]  James S. Speck,et al.  A growth diagram for plasma-assisted molecular beam epitaxy of In-face InN , 2007 .

[26]  B. Monemar,et al.  On the lattice parameters of GaN , 2007 .

[27]  Akihiko Yoshikawa,et al.  Proposal and achievement of novel structure InN∕GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix , 2007 .

[28]  P. Perlin,et al.  60 mW continuous-wave operation of InGaN laser diodes made by plasma-assisted molecular-beam epitaxy , 2006 .

[29]  Y. Narukawa,et al.  Slip systems and misfit dislocations in InGaN epilayers , 2003 .

[30]  Maria R. Correia,et al.  Compositional pulling effects in InxGa1-x N/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study , 2001 .

[31]  R. Davis,et al.  The Composition Pulling Effect in MOVPE Grown InGaN on GaN and AlGaN and its TEM Characterization , 1997 .

[32]  C. T. Foxon,et al.  Lattice parameters of gallium nitride , 1996 .