Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi.

This review focuses on recent evidence that identifies potential extracellular and cellular mechanisms that may be involved in the tolerance of ectomycorrhizal fungi to excess metals in their environment. It appears likely that mechanisms described in the nonmycorrhizal fungal species are used in the ectomycorrhizal fungi as well. These include mechanisms that reduce uptake of metals into the cytosol by extracellular chelation through extruded ligands and binding onto cell-wall components. Intracellular chelation of metals in the cytosol by a range of ligands (glutathione, metallothioneins), or increased efflux from the cytosol out of the cell or into sequestering compartments are also key mechanisms conferring tolerance. Free-radical scavenging capacities through the activity of superoxide dismutase or production of glutathione add another line of defence against the toxic effect of metals.

[1]  A. Morselt,et al.  Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi , 1986, Plant and Soil.

[2]  G. Krauss,et al.  Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. , 2005, Biochemical and biophysical research communications.

[3]  F. Morel,et al.  Biochemistry: A cadmium enzyme from a marine diatom , 2005, Nature.

[4]  G. Gadd,et al.  Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi , 2005 .

[5]  G. Gadd,et al.  Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica , 2005, Applied and Environmental Microbiology.

[6]  P. Goldsbrough,et al.  Structure, organization and expression of the metallothionein gene family inArabidopsis , 1995, Molecular and General Genetics MGG.

[7]  K. Adriaensen Adaptive heavy metal tolerance in the ectomycorrhizal fungi Suillus bovinus and Suillus luteus , 2005 .

[8]  V. de Lorenzo,et al.  The Role of Thiol Species in the Hypertolerance of Aspergillus sp. P37 to Arsenic* , 2004, Journal of Biological Chemistry.

[9]  M. Chalot,et al.  Cadmium-Responsive Thiols in the Ectomycorrhizal Fungus Paxillus involutus , 2004, Applied and Environmental Microbiology.

[10]  M. Chalot,et al.  Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus , 2004, FEBS letters.

[11]  K. Nichols,et al.  The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. , 2004, Environmental pollution.

[12]  W. Bae,et al.  Proteomic Study for the Cellular Responses to Cd2+ in Schizosaccharomyces pombe Through Amino Acid-coded Mass Tagging and Liquid Chromatography Tandem Mass Spectrometry*S , 2004, Molecular & Cellular Proteomics.

[13]  H. V. Joshi,et al.  Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli. , 2004, Marine pollution bulletin.

[14]  István Pócsi,et al.  Glutathione, altruistic metabolite in fungi. , 2004, Advances in microbial physiology.

[15]  S. Wright,et al.  A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi , 2004, Plant and Soil.

[16]  M. Zenk,et al.  Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin , 2004, Archives of Microbiology.

[17]  A. Meharg The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. , 2003, Mycological research.

[18]  S. Clemens,et al.  Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. , 2003, The New phytologist.

[19]  V. Faraco,et al.  Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. , 2003, Microbiology.

[20]  M. Lazard,et al.  Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. , 2003, European journal of biochemistry.

[21]  D. Eide Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. , 2003, The Journal of nutrition.

[22]  F. Green,et al.  Copper tolerance of brown-rot fungi: time course of oxalic acid production , 2003 .

[23]  G. Gadd,et al.  Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites , 2003 .

[24]  L. Lanfranco,et al.  Zinc ions alter morphology and chitin deposition in an ericoid fungus. , 2010, European journal of histochemistry : EJH.

[25]  A. Polle,et al.  Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. , 2002, FEMS microbiology ecology.

[26]  C. Grant,et al.  Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae , 2002, Molecular microbiology.

[27]  A. Polle,et al.  Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. , 2002, Journal of experimental botany.

[28]  J. Hall Cellular mechanisms for heavy metal detoxification and tolerance. , 2002, Journal of experimental botany.

[29]  P. van Hees,et al.  Aluminium speciation in forest soil solution--modelling the contribution of low molecular weight organic acids. , 2001, The Science of the total environment.

[30]  M. Chalot,et al.  Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. , 2001, European journal of biochemistry.

[31]  T. Kuyper,et al.  Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. , 2001, Trends in ecology & evolution.

[32]  D. Panaccione,et al.  Organic acid exudation by Laccaria bicolor and Pisolithus tinctorius exposed to aluminum in vitro , 2001 .

[33]  M. Toledano,et al.  A Proteome Analysis of the Cadmium Response in Saccharomyces cerevisiae * , 2001, The Journal of Biological Chemistry.

[34]  S. Clemens Molecular mechanisms of plant metal tolerance and homeostasis , 2001, Planta.

[35]  S. Avery,et al.  Metal toxicity in yeasts and the role of oxidative stress. , 2001, Advances in applied microbiology.

[36]  K. Zierold,et al.  Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies – Hebeloma crustuliniforme ectomycorrhizas , 2000 .

[37]  M. Bhanoori,et al.  In vivo chitin-cadmium complexation in cell wall of Neurospora crassa. , 2000, Biochimica et biophysica acta.

[38]  Elena S. Di Martino,et al.  Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi , 2000 .

[39]  R. Finlay,et al.  Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations , 2000 .

[40]  D. Godbold,et al.  Metal toxicity and ectomycorrhizas , 2000 .

[41]  J. Pittman,et al.  Emerging mechanisms for heavy metal transport in plants. , 2000, Biochimica et biophysica acta.

[42]  D. Blaudez,et al.  Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. , 2000, Microbiology.

[43]  G. Sannia,et al.  Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus , 2000, Applied and Environmental Microbiology.

[44]  D. Eide,et al.  Regulation of Zinc Homeostasis in Yeast by Binding of the ZAP1 Transcriptional Activator to Zinc-responsive Promoter Elements* , 1998, The Journal of Biological Chemistry.

[45]  Douglas L. Godbold,et al.  Ectomycorrhizas and amelioration of metal stress in forest trees , 1998 .

[46]  C. Leyval,et al.  Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects , 1997, Mycorrhiza.

[47]  P. A. Rea,et al.  A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. Ketteridge,et al.  Copper-binding proteins in ectomycorrhizal fungi. , 1997, The New phytologist.

[49]  C. Leyval,et al.  EFFECT OF HEAVY-METAL POLLUTION ON MYCORRHIZAL COLONIZATION AND FUNCTION , 1997 .

[50]  J. Garbaye,et al.  Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils , 1996 .

[51]  J. Tobin,et al.  Fungal melanins and their interactions with metals. , 1996, Enzyme and microbial technology.

[52]  H. Joh,et al.  A Physiological Role for Saccharomyces cerevisiae Copper/Zinc Superoxide Dismutase in Copper Buffering (*) , 1995, The Journal of Biological Chemistry.

[53]  C. Brunold,et al.  Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L.) Karst.] and its ectomycorrhizal fungus Laccaria laccata (Scop, ex Fr.) Bk. & Br.: Sulphate reduction, thiols and distribution of the heavy metal. , 1993, The New phytologist.

[54]  D. Thiele,et al.  Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[55]  G. Gadd Interactions of fungip with toxic metals , 1993 .

[56]  G Scheel,et al.  Heavy metal tolerance in the fission yeast requires an ATP‐binding cassette‐type vacuolar membrane transporter. , 1992, The EMBO journal.

[57]  A. Holmgren,et al.  Thioredoxin and glutaredoxin systems. , 2019, The Journal of biological chemistry.

[58]  D. Winge,et al.  Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. , 1989, The Journal of biological chemistry.

[59]  M. Lodenius,et al.  Cadmium and mercury in macrofungi― mechanisms of transport and accumulation , 1989 .

[60]  G. Gadd,et al.  Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. , 1986, Canadian journal of microbiology.

[61]  B. Halliwell,et al.  Free radicals in biology and medicine , 1985 .

[62]  J. R. Parrott,et al.  Microbial Cells as Biosorbents for Heavy Metals: Accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa , 1981, Applied and environmental microbiology.