Detection of gaps in sinusoids and pulse trains by patients with cochlear implants.

Gap detection thresholds were measured in patients with the Nucleus and Symbion cochlear implants as a function of several current waveform parameters. Detection of gaps in an electrical sinusoidal stimulus or in a train of biphasic pulses by implanted patients was similar to detection of gaps in comparable acoustic stimuli by normal listeners. Threshold gaps were 20-50 ms for low-level stimuli and improved with stimulus level to 2-5 ms for high-level stimuli. Gap detection performance was not affected by the electrode position in the cochlea or by the distance between stimulating electrodes. The data from most patients were well fitted by a trading relation between the duration of the gap and the square of stimulus intensity, indicating energy detection. The similarity of gap thresholds for normal subjects and implant patients suggests that many details of the peripheral neural activity are probably not important for this task, and that there is no retrocochlear loss of auditory temporal resolution with sensorineural hearing loss.