NEMS/MEMS cantilever-based biosensors: addressing the open issues

The impressive developments in micro / nano-electro-mechanical-systems (MEMS; NEMS) have led to a new class of chemical and biological sensors based on micro and nano cantilevers. This work focuses on fabrication challenges of flat cantilevers exhibiting well-controlled, uniform and reproducible mechanical performance. Our experimental study is based on cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. Experimental results on fabrication and characterization of composite porous silicon-crystalline silicon microcantilevers made of SOI wafers are also presented, where the porous silicon surface provides an excellent interface for immobilization of the biosensing layer. The optimal geometric design of microcantilevers depending on the application as well on the selected sensing mode (static or dynamic) is considered. The innovative aspects and open issues of NEMS/MEMS cantilever-based biosensors are addressed.

[1]  N E Chayen,et al.  Porous silicon: an effective nucleation-inducing material for protein crystallization. , 2001, Journal of molecular biology.

[2]  A K Chakraborty,et al.  Origin of nanomechanical cantilever motion generated from biomolecular interactions. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Martin Hegner,et al.  Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. , 2005, Biosensors & bioelectronics.

[4]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[5]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[6]  H. Craighead Nanoelectromechanical systems. , 2000, Science.

[7]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[8]  H. Kaabi,et al.  Vapour-etching-based porous silicon: a new approach , 2002 .

[9]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .

[10]  Yael Nemirovsky,et al.  Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing , 2008 .

[11]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[12]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[13]  V. Dravid,et al.  MOSFET-Embedded Microcantilevers for Measuring Deflection in Biomolecular Sensors , 2006, Science.

[14]  L. Lechuga,et al.  Development of nanomechanical biosensors for detection of the pesticide DDT. , 2003, Biosensors & bioelectronics.

[15]  Melanie Remy,et al.  Wikipedia: The Free Encyclopedia200214Wikipedia: The Free Encyclopedia. 2001 – updated daily. Gratis http://www.wikipedia.com , 2002 .

[16]  B. Rogers,et al.  Explosives: A microsensor for trinitrotoluene vapour , 2003, Nature.

[17]  W G Beattie,et al.  Advances in genosensor research. , 1995, Clinical chemistry.

[18]  Gerhard Lammel,et al.  Free-standing, mobile 3D porous silicon microstructures , 2000 .

[19]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[20]  Y. Nemirovsky,et al.  Possible model of protein nucleation and crystallization on porous silicon , 2005 .

[21]  William G Delinger,et al.  Viral detection using an embedded piezoresistive microcantilever sensor , 2003 .

[22]  Y. Nemirovsky,et al.  New type of dual macro and nano fractal structure of reaction induced vapor phase stain etched porous silicon , 2007 .

[23]  D. Kwong,et al.  Photoluminescence and formation mechanism of chemically etched silicon , 1992 .

[24]  Ricardo Garcia,et al.  Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. , 2010, Nature nanotechnology.

[25]  Cengiz S. Ozkan,et al.  High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding , 2003 .

[26]  Y. Nemirovsky,et al.  A model for enhanced nucleation of protein crystals on a fractal porous substrate. , 2006, Biophysical journal.

[27]  Anja Boisen,et al.  Miniature sensor suitable for electronic nose applications. , 2007, The Review of scientific instruments.

[28]  S Kalem,et al.  Possibility of fabricating light-emitting porous silicon from gas phase etchants. , 2000, Optics express.

[29]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[30]  H. Lang,et al.  A label-free immunosensor array using single-chain antibody fragments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Plaza,et al.  Novel cantilever design with high control of the mechanical performance , 2007 .

[32]  B. L. Weeks,et al.  A microcantilever-based pathogen detector. , 2003, Scanning.

[33]  Angeliki Tserepi,et al.  Thermal properties of suspended porous silicon micro-hotplates for sensor applications , 2003 .

[34]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[35]  T. Thundat,et al.  Glucose biosensing using an enzyme-coated microcantilever , 2002 .

[36]  Laura M. Lechuga,et al.  Nanomechanical biosensors: a new sensing tool , 2006 .

[37]  Wenmiao Shu,et al.  Investigation of biotin-streptavidin binding interactions using microcantilever sensors. , 2007, Biosensors & bioelectronics.

[38]  V. Mathet,et al.  Fabrication of free-standing porous silicon microstructures , 2007 .

[39]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[40]  Michel Godin,et al.  A complete analysis of the laser beam deflection systems used in cantilever-based systems. , 2007, Ultramicroscopy.

[41]  V. Freire,et al.  Morphology of nanostructured luminescent silicon layers , 2004 .

[42]  T. Kenny,et al.  Engineering MEMS Resonators With Low Thermoelastic Damping , 2006, Journal of Microelectromechanical Systems.

[43]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[44]  Thomas Laurell,et al.  Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities , 1997 .

[45]  Xianfan Xu,et al.  Laser bending for high-precision curvature adjustment of microcantilevers , 2005 .

[46]  Raj Mutharasan,et al.  Method for quantification of a prostate cancer biomarker in urine without sample preparation. , 2007, Analytical chemistry.

[47]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[48]  Peter Kordos,et al.  Porous silicon as a substrate material for potentiometric biosensors , 1996 .

[49]  X. Richard Zhang,et al.  Development of a biosensor based on laser-fabricatedpolymer microcantilevers , 2004 .

[50]  Songlin Feng,et al.  Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression , 2007 .

[51]  Francesca Campabadal,et al.  Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry , 2005 .

[52]  Christiane Ziegler,et al.  Cantilever-based biosensors , 2004, Analytical and bioanalytical chemistry.