High order explicit methods for parabolic equations
暂无分享,去创建一个
[1] S. Bernstein,et al. Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle , 1926 .
[2] H. Lomax. On the construction of highly stable, explicit, numerical methods for integrating coupled ordinary differential equations with parasitic eigenvalues , 1968 .
[3] J. Verwer. A class of stabilized three-step runge-kutta methods for the numerical integration of parabolic equations : (preprint) , 1977 .
[4] P. Houwen,et al. On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .
[5] V. I. LEBEDEV. A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. Part I , 1993 .
[6] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[7] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[8] V. Lebedev,et al. Zolotarev polynomials and extremum problems , 1994 .
[9] J. Verwer. Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .