Iterative continuation and the solution of nonlinear two-point boundary value problems
暂无分享,去创建一个
[1] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[2] W. E. Bosarge,et al. Infinite dimensional multipoint methods and the solution of two point boundary value problems , 1970 .
[3] S. Kahne,et al. Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.
[4] H. A. Antosiewicz. Newton's Method and Boundary Value Problems , 1968, J. Comput. Syst. Sci..
[5] F. Ficken. The continuation method for functional equations , 1951 .
[6] J. W. Schmidt,et al. L. Collatz, Funktionalanalysis und numerische Mathematik. (Die Grundlehren der mathematischen Wissenschaften, Band 120) VI + 371 S. m. 96 Abb. u. 2 Porträts. Berlin/Göttingen/Heidelberg 1964. Springer-Verlag. Preis geb. DM 58,— , 1965 .
[7] R. Bellman,et al. Quasilinearization and nonlinear boundary-value problems , 1966 .
[8] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[9] L. Collatz. Funktionalanalysis und numerische Mathematik , 1964 .
[10] Tosio Kato. Perturbation theory for linear operators , 1966 .
[11] W. E. Bosarge,et al. Some numerical results for iterative continuation in nonlinear boundary-value problems , 1971 .
[12] J. Dieudonne. Foundations of Modern Analysis , 1969 .
[13] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[14] Peter Falb,et al. Some successive approximation methods in control and oscillation theory , 1972 .
[15] G. Meyer. On Solving Nonlinear Equations with a One-Parameter Operator Imbedding , 1968 .