Iterative continuation and the solution of nonlinear two-point boundary value problems

In this paper we present a unified function theoretic approach for the numerical solution of a wide class of two-point boundary value problems. The approach generates a class of continuous analog iterative methods which are designed to overcome some of the essential difficulties encountered in the numerical treatment of two-point problems. It is shown that the methods produce convergent sequences of iterates in cases where the initial iterate (guess),x0, is “far” from the desired solution. The results of some numerical experiments using the methods on various boundary value problems are presented in a forthcoming paper.

[1]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[2]  W. E. Bosarge,et al.  Infinite dimensional multipoint methods and the solution of two point boundary value problems , 1970 .

[3]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[4]  H. A. Antosiewicz Newton's Method and Boundary Value Problems , 1968, J. Comput. Syst. Sci..

[5]  F. Ficken The continuation method for functional equations , 1951 .

[6]  J. W. Schmidt,et al.  L. Collatz, Funktionalanalysis und numerische Mathematik. (Die Grundlehren der mathematischen Wissenschaften, Band 120) VI + 371 S. m. 96 Abb. u. 2 Porträts. Berlin/Göttingen/Heidelberg 1964. Springer-Verlag. Preis geb. DM 58,— , 1965 .

[7]  R. Bellman,et al.  Quasilinearization and nonlinear boundary-value problems , 1966 .

[8]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[9]  L. Collatz Funktionalanalysis und numerische Mathematik , 1964 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  W. E. Bosarge,et al.  Some numerical results for iterative continuation in nonlinear boundary-value problems , 1971 .

[12]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[13]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[14]  Peter Falb,et al.  Some successive approximation methods in control and oscillation theory , 1972 .

[15]  G. Meyer On Solving Nonlinear Equations with a One-Parameter Operator Imbedding , 1968 .