SINGULAR WEYL’S LAW WITH RICCI CURVATURE BOUNDED BELOW

. Using the examples constructed in [41], we show that for compact RCD( K,N )/Ricci limit spaces, Weyl’s law may not hold for any power, and in the case when power law holds, it is in terms of the Hausdorff measure of the singular set instead of the regular set. These are the first examples with such features.

[1]  Guofang Wei,et al.  Examples of open manifolds with positive Ricci curvature and non-proper Busemann functions , 2022, 2203.15211.

[2]  Nicola Gigli,et al.  Weakly non-collapsed RCD spaces are strongly non-collapsed , 2021, Journal für die reine und angewandte Mathematik (Crelles Journal).

[3]  A. Mondino,et al.  Weak Laplacian bounds and minimal boundaries in non-smooth spaces with Ricci curvature lower bounds , 2021, 2107.12344.

[4]  Guofang Wei,et al.  Examples of Ricci limit spaces with non-integer Hausdorff dimension , 2021, Geometric and Functional Analysis.

[5]  X. Dai,et al.  Witten deformation on non-compact manifolds: heat kernel expansion and local index theorem , 2020, Mathematische Zeitschrift.

[6]  A. Mondino,et al.  On the topology and the boundary of N–dimensional RCD(K,N) spaces , 2019, Geometry & Topology.

[7]  L. Ambrosio CALCULUS, HEAT FLOW AND CURVATURE-DIMENSION BOUNDS IN METRIC MEASURE SPACES , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[8]  Stephan Stadler,et al.  Ricci curvature in dimension 2 , 2018, Journal of the European Mathematical Society.

[9]  Daniele Semola,et al.  Constancy of the Dimension for RCD(K,N) Spaces via Regularity of Lagrangian Flows , 2018, Communications on Pure and Applied Mathematics.

[10]  S. Zelditch,et al.  Eigenfunctions of the Laplacian on a Riemannian manifold , 2017 .

[11]  G. Philippis,et al.  Non-collapsed spaces with Ricci curvature bounded from below , 2017, 1708.02060.

[12]  L. Ambrosio,et al.  Local spectral convergence in RCD∗(K,N) spaces , 2017, Nonlinear Analysis.

[13]  L. Ambrosio,et al.  Short-time behavior of the heat kernel and Weyl's law on $RCD^*(K, N)$-spaces , 2017, 1701.03906.

[14]  Xiping Zhu,et al.  Weyl's law on $RCD^*(K,N)$ metric measure spaces , 2017, 1701.01967.

[15]  Emanuel Milman,et al.  The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.

[16]  A. Mondino,et al.  On the universal cover and the fundamental group of an RCD*(K,N)-space , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).

[17]  L. Ambrosio,et al.  Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces , 2015, Memoirs of the American Mathematical Society.

[18]  Sajjad Lakzian,et al.  Characterization of Low Dimensional RCD*(K, N) Spaces , 2015, 1505.00420.

[19]  Renjin Jiang,et al.  Heat Kernel Bounds on Metric Measure Spaces and Some Applications , 2014, 1407.5289.

[20]  A. Mondino,et al.  Structure theory of metric measure spaces with lower Ricci curvature bounds , 2014, Journal of the European Mathematical Society.

[21]  Renjin Jiang The Li-Yau Inequality and Heat Kernels on Metric Measure Spaces , 2014, 1405.0684.

[22]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[23]  A. Grigor’yan Heat Kernel and Analysis on Manifolds , 2012 .

[24]  N. Gigli On the differential structure of metric measure spaces and applications , 2012, 1205.6622.

[25]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[26]  T. Rajala Local Poincaré inequalities from stable curvature conditions on metric spaces , 2011, 1107.4842.

[27]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[28]  T. Colding,et al.  Sharp Holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications , 2011, 1102.5003.

[29]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[30]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[31]  J. Lott Some geometric properties of the Bakry-Émery-Ricci tensor , 2002, math/0211065.

[32]  E. Davies,et al.  Non‐Gaussian Aspects of Heat Kernel Behaviour , 1997 .

[33]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[34]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations , 1995 .

[35]  J. Cheeger Analytic torsion and the heat-equation , 1979 .

[36]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian Geometry. I , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Enrico Pasqualetto,et al.  Lectures on Nonsmooth Differential Geometry , 2020 .

[38]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[39]  Yu Ding Heat kernels and Green’s functions on limit spaces , 2002 .

[40]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[41]  S. Zelditch,et al.  Classical Limits of Eigenfunctions for Some Completely Integrable Systems , 1999 .

[42]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[43]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality , 1996 .

[44]  B. Simon Functional integration and quantum physics , 1979 .

[45]  John Milnor,et al.  A note on curvature and fundamental group , 1968 .