Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence

Direct Numerical Simulation (DNS) is used to study the interaction between normal shock waves of moderate strength (M1= 1.2 and M1 = 1.5) and isotropic turbulence. A complete description of the turbulence behaviour across the shock is provided and the influence of the nature of the incoming turbulence on the interaction is investigated. The presence of upstream entropy fluctuations satisfying the Strong Reynolds Analogy enhances the amplification of the turbulent kinetic energy and transverse vorticity variances across the shock compared to the solenoidal (pure vorticity) case. Budgets for the fluctuating-vorticity variances are computed, showing that the baroclinic torque is responsible for this additional production of transverse vorticity. More reduction of the transverse Taylor microscale and integral scale is also observed in the vorticity-entropy case while no influence can beseen on the longitudinal Taylor microscale. When the upstream turbulence is dominated by acoustic and vortical fluctuations, less amplification of the kinetic energy (for Mach numbers between 1.25 and 1.8), less reduction of the transverse microscale and more amplification of the transverse vorticity variance are observed through the shock compared to the solenoidal case. In all cases, the classic estimation of Batchelor relating the dissipation rate and the integral scale of the flow proves to be invalid. These results are obtained with the same numerical tool and similar flow parameters, and they are in good agreement with Linear Interaction Analysis (LIA).

[1]  Gordon Erlebacher,et al.  The analysis and simulation of compressible turbulence , 1990, Theoretical and Computational Fluid Dynamics.

[2]  Parviz Moin,et al.  Direct numerical simulation of isotropic turbulence interacting with a weak shock wave , 1993, Journal of Fluid Mechanics.

[3]  Krishnan Mahesh,et al.  The interaction of an isotropic field of acoustic waves with a shock wave , 1995, Journal of Fluid Mechanics.

[4]  Claude Cambon,et al.  Turbulence amplification by a shock wave and rapid distortion theory , 1993 .

[5]  T. L. Chan,et al.  Exposure characterization of aerosols and carbon monoxide from supplemental inflatable restraint (automotive air bag) systems , 1989 .

[6]  Pierre Sagaut,et al.  A Class of Explicit ENO Filters with Application to Unsteady Flows , 2001 .

[7]  T. Dubois,et al.  The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence , 2002 .

[8]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[9]  J. Délery Turbulent Shear-Layer/Shock-Wave Interactions , 1986 .

[10]  Stéphane Jamme Étude de l'interaction entre une turbulence homogène isotrope et une onde de choc , 1998 .

[11]  L. Jacquin,et al.  Linear interaction of a cylindrical entropy spot with a shock , 2001 .

[12]  Brian Launder,et al.  Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence , 1976, Journal of Fluid Mechanics.

[13]  P. Moin,et al.  Interaction of Isotropic Turbulence with a Shock Wave , 1992 .

[14]  J. Lacharme,et al.  A Shock-Wave/Free Turbulence Interaction , 1986 .

[15]  W. Merzkirch,et al.  Interaction of a normal shock wave with a compressible turbulent flow , 1990 .

[16]  P. Sagaut,et al.  Large-Eddy Simulation of Shock/Homogeneous Turbulence Interaction , 2002 .

[17]  P. Moin,et al.  Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow , 1992 .

[18]  L. Kovasznay Turbulence in Supersonic Flow , 1953 .

[19]  F. Moore,et al.  Unsteady Oblique Interaction of a Shock Wave With a Plane Disturbance , 1954 .

[20]  J. Andreopoulos,et al.  Rapid compression of grid‐generated turbulence by a moving shock wave , 1992 .

[21]  Rainer Friedrich,et al.  Direct Numerical Simulation of a Mach 2 shock interacting with isotropic turbulence , 1995 .

[22]  F. Nicoud,et al.  Large-Eddy Simulation of the Shock/Turbulence Interaction , 1999 .

[23]  J. Bonnet,et al.  Experimental study of a normal shock/homogeneous turbulence interaction , 1996 .

[24]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[25]  H. S. Ribner,et al.  Spectra of noise and amplified turbulence emanating from shock-turbulence interaction: Two scenarios , 1986 .

[26]  S. Corrsin,et al.  Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence , 1978, Journal of Fluid Mechanics.

[27]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[28]  G. S. Patterson,et al.  Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence , 1972 .

[29]  H. Ribner,et al.  Shock-turbulence interaction and the generation of noise , 1954 .

[30]  Parviz Moin,et al.  Interaction of isotropic turbulence with shock waves: effect of shock strength , 1997, Journal of Fluid Mechanics.

[31]  L. Jacquin,et al.  An Experiment on Free Turbulence/Shock Wave Interaction , 1993 .

[32]  Douglas A. Rotman,et al.  Shock wave effects on a turbulent flow , 1991 .

[33]  H. Ribner,et al.  Convection of a pattern of vorticity through a shock wave , 1952 .

[34]  C. Watkins,et al.  Experimental Study of Interactions of Shock Wave With Free-Stream Turbulence , 1994 .

[35]  Krishnan Mahesh,et al.  The influence of entropy fluctuations on the interaction of turbulence with a shock wave , 1997, Journal of Fluid Mechanics.

[36]  J. Andreopoulos,et al.  Experiments in a shock wave/homogeneous turbulence interaction , 1990 .