Highly Efficient Cu(In,Ga)Se2 Thin-Film Submodule Fabricated Using a Three-Stage Process

Using a three-stage process, a highly efficient, integrated chalcopyrite Cu(In,Ga)Se2 (CIGS) submodule was fabricated with a certified efficiency of 18.34% and an open circuit voltage of 2.963 V, a short circuit current of 29.05 mA, a fill factor of 0.762, and a designated area of 3.576 cm2. The diode properties and parasitic resistances of the submodule and a reference single cell containing a CIGS absorber layer identical to that in the submodule were determined using a distributed diode model. In addition, the fundamental loss mechanisms for the submodule were investigated.

[1]  H. Takakura,et al.  Control of conduction band offset in wide-gap Cu(In,Ga)Se solar cells , 2003 .

[2]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[3]  J.L. Boone,et al.  Solar-cell design based on a distributed diode analysis , 1978, IEEE Transactions on Electron Devices.

[4]  S. Ishizuka,et al.  Cu(In,Ga)Se2 solar cells and mini-modules fabricated on thin soda-lime glass substrates , 2013 .

[5]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[7]  M. Yamaguchi,et al.  Activity and current status of R&D on space solar cells in Japan , 2005 .

[8]  Shigeru Niki,et al.  Texture and morphology variations in (In,Ga)2Se3 and Cu(In,Ga)Se2 thin films grown with various Se source conditions , 2013 .

[9]  Ingrid Repins,et al.  CIGS absorbers and processes , 2010 .

[10]  L. Mansfield,et al.  Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency , 2012 .

[11]  D. Hariskos,et al.  High-efficiency Cu(In,Ga)Se2 cells and modules , 2013 .

[12]  G. Martinelli,et al.  Contact grid optimization methodology for front contact concentration solar cells , 2003 .

[13]  S. Nishiwaki,et al.  Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[14]  B. Dimmler,et al.  Scaling up issues of CIGS solar cells , 2000 .

[15]  J. Sites,et al.  Efficiency limitations for wide-band-gap chalcopyrite solar cells , 2005 .

[16]  F. Kessler,et al.  Technological aspects of flexible CIGS solar cells and modules , 2004 .

[17]  S. Ishizuka,et al.  High‐efficiency CIGS submodules , 2012 .

[18]  M. Powalla,et al.  Large-area CIGS modules: Pilot line production and new developments , 2006 .