Toward accurate polynomial evaluation in rounded arithmetic

Given a multivariate real (or complex) polynomial p and a domain D, we would like to decide whether an algorithm exists to evaluate p(x) accurately for all x ∈ D using rounded real (or complex) arithmetic. Here "accurately" means with relative error less than 1, i.e., with some correct leading digits. The answer depends on the model of rounded arithmetic: We assume that for any arithmetic operator op(a, b), for example a+b or ab, its computed value is op(a, b)� (1+δ), where |δ| is bounded by some constant ǫ where 0 < ǫ ≪ 1, but δ is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point algorithms. Our ultimate goal is to establish a decision procedure that, for any p and D, either exhibits an accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers) we show that some polynomials p are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just on p and D, but on which arithmetic operators are available (perhaps beyond +, −, and � ), which constants are available to the algorithm (integers, algebraic numbers, ...), and whether branching is permitted in the algorithm. For floating point computation, our model can be used to identify which accurate operators beyond +, − and � (e.g., dot products, 3x3 determinants, ...) are necessary to evaluate a particular p(x). Toward this goal, we present necessary conditions on p for it to be accurately evaluable on open real or complex domains D. We also give sufficient conditions, and describe progress toward a complete decision procedure. We do present a complete decision procedure for homogeneous polynomials p with integer coefficients,D = C n , and using only the arithmetic operations +, − and � .

[1]  S. Smale,et al.  The mathematics of numerical analysis , 1996 .

[2]  Colm Art O'Cinneide,et al.  Relative-error bounds for the LU decomposition via the GTH algorithm , 1996 .

[3]  James Demmel,et al.  Accurate and Efficient Floating Point Summation , 2003, SIAM J. Sci. Comput..

[4]  Dima Grigoriev,et al.  Complexity Lower Bounds for Approximation Algebraic Computation Trees , 1999, J. Complex..

[5]  M. Pichat,et al.  Correction d'une somme en arithmetique a virgule flottante , 1972 .

[6]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[9]  David H. Bailey,et al.  A Fortran 90-based multiprecision system , 1995, TOMS.

[10]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[11]  Plamen Koev,et al.  Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials , 2006 .

[12]  James Demmel,et al.  The Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System , 2005, SIAM J. Matrix Anal. Appl..

[13]  J. Demmel On condition numbers and the distance to the nearest ill-posed problem , 2015 .

[14]  Felipe Cucker,et al.  COMPLEXITY AND REAL COMPUTATION: A MANIFESTO , 1996 .

[15]  Lenore Blum,et al.  Computing over the Reals: Where Turing Meets Newton , 2004 .

[16]  James Demmel Underflow and the Reliability of Numerical Software , 1984 .

[17]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[18]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[19]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[20]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[21]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[22]  Felipe Cucker,et al.  Complexity estimates depending on condition and round-off error , 1998, JACM.

[23]  Douglas M. Priest,et al.  Algorithms for arbitrary precision floating point arithmetic , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[24]  James Renegar,et al.  Is It Possible to Know a Problem Instance Is Ill-Posed?: Some Foundations for a General Theory of Condition Numbers , 1994, J. Complex..

[25]  Froilán M. Dopico,et al.  An Orthogonal High Relative Accuracy Algorithm for the Symmetric Eigenproblem , 2003, SIAM J. Matrix Anal. Appl..

[26]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[27]  David H. Bailey,et al.  Multiprecision Translation and Execution of Fortran Programs , 1993 .

[28]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[29]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[30]  G. Ziegler Lectures on Polytopes , 1994 .

[31]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[32]  James Demmel,et al.  Accurate SVDs of Structured Matrices , 1998 .

[33]  James Demmel,et al.  Accurate and Ecient Algorithms for Floating Point Computation , 2003 .

[34]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[35]  F. Cucker,et al.  Decision Problems and Round-Off Machines , 2001, Theory of Computing Systems.

[36]  Plamen Koev,et al.  Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices , 2005, SIAM J. Matrix Anal. Appl..

[37]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[38]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[39]  James Demmel On error analysis in arithmetic with varying relative precision , 1987, 1987 IEEE 8th Symposium on Computer Arithmetic (ARITH).

[40]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[41]  Qiang Ye,et al.  Entrywise perturbation theory for diagonally dominant M-matrices with applications , 2002, Numerische Mathematik.

[42]  Arun Ram,et al.  Schur functions , 2005 .

[43]  James Demmel,et al.  Accurate SVDs of weakly diagonally dominant M-matrices , 2004, Numerische Mathematik.

[44]  F. Olver,et al.  Closure and precision in level-index arithmetic , 1990 .

[45]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[46]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[47]  Joseph L. Taylor Several Complex Variables with Connections to Algebraic Geometry and Lie Groups , 2002 .

[48]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[49]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[50]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[51]  Keith Kendig Elementary algebraic geometry , 1976 .

[52]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[53]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[54]  A. Neumaier Interval methods for systems of equations , 1990 .

[55]  Daniel A. Spielman The Smoothed Analysis of Algorithms , 2005, FCT.

[56]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[57]  Nicholas J. Higham,et al.  Stability analysis of algorithms for solving confluent Vandermonde-like systems , 1990 .

[58]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .

[59]  T. J. Dekker,et al.  A floating-point technique for extending the available precision , 1971 .

[61]  B. Reznick Some concrete aspects of Hilbert's 17th Problem , 2000 .

[62]  J. Demmel,et al.  Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .

[63]  Qiang Ye,et al.  Accurate computation of the smallest eigenvalue of a diagonally dominant M-matrix , 2002, Math. Comput..

[64]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[65]  Erdem Hokenek,et al.  Design of the IBM RISC System/6000 Floating-Point Execution Unit , 1990, IBM J. Res. Dev..

[66]  Plamen Koev Accurate Computations with Totally Nonnegative Matrices , 2007, SIAM J. Matrix Anal. Appl..

[67]  James Demmel The Complexity of Accurate Floating Point Computation , 2002 .