Structural basis of temperature-dependent electrical resistance of evaporation-deposited amorphous GeSe film

[1]  H. Tan,et al.  NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. , 2013, ACS applied materials & interfaces.

[2]  M. Micoulaut,et al.  Structure, topology, rings, and vibrational and electronic properties of Ge x Se 1-x glasses across the rigidity transition: A numerical study , 2013 .

[3]  S. M. Levin,et al.  Colloidal Synthesis and Electrical Properties of GeSe Nanobelts , 2012 .

[4]  Doo Seok Jeong,et al.  Threshold resistive and capacitive switching behavior in binary amorphous GeSe , 2012 .

[5]  Y. Choi,et al.  Role of local structure in the phase change of Ge–Te films , 2012 .

[6]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[7]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[8]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[9]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[10]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[11]  L. Makinistian,et al.  Ab initio calculations of the electronic and optical properties of germanium selenide , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Bart J. Kooi,et al.  Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films , 2006 .

[13]  B. Kooi,et al.  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[14]  J. Hosson,et al.  Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of Gexsb2Te3+x (x=1,2,3) phase change material , 2002 .

[15]  R. Thangaraj,et al.  Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films , 2002 .

[16]  M Newville,et al.  EXAFS analysis using FEFF and FEFFIT. , 2001, Journal of synchrotron radiation.

[17]  N. Kosugi,et al.  Electronic structures and local atomic configurations in amorphous GeSe and GeTe , 1998 .

[18]  Jian Liu,et al.  The relation between the melt topology and glass-forming ability for liquid Ge-Se alloys , 1994 .

[19]  John J. Rehr,et al.  Theoretical X-ray Absorption Fine Structure Standards , 1991 .

[20]  Zhou,et al.  Structure of germanium-selenium glasses: An x-ray-absorption fine-structure study. , 1991, Physical review. B, Condensed matter.

[21]  Paul H. Fuoss,et al.  Application of differential anomalous x-ray scattering to structural studies of amorphous materials , 1981 .

[22]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[23]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[24]  N. N. Koren,et al.  Investigation of Alloys of the System GeS-GeSe , 1978, March 16.

[25]  A. Thanailakis,et al.  Anisotropic Indirect Absorption Edge in GeSe , 1976 .

[26]  Tran Tri Nang,et al.  Electrical and Optical Properties of GexSe1-x Amorphous Thin Films , 1976 .