Chiral calix[4]azacrowns for enantiomeric recognition of amino acid derivatives

[1]  V. Böhmer,et al.  Calixarenes: A Versatile Class of Macrocyclic Compounds , 2011 .

[2]  Carl Redshaw,et al.  The use of calixarenes in metal-based catalysis. , 2008, Chemical reviews.

[3]  M. Yılmaz,et al.  Synthesis of new chiral calix[4]azacrowns for enantiomeric recognition of carboxylic acids , 2008 .

[4]  M. Yılmaz,et al.  Calixarene-based chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids , 2008 .

[5]  M. Yılmaz,et al.  Chiral mono and diamide derivatives of calix[4]arene for enantiomeric recognition of chiral amines. , 2008, Chirality.

[6]  Yoshihisa Inoue,et al.  Chirality-sensing supramolecular systems. , 2008, Chemical reviews.

[7]  Ihsene Oueslati Calix(aza)crowns: synthesis, recognition, and coordination. A mini review , 2007 .

[8]  M. Yılmaz,et al.  Enantiomeric recognition of amino acid derivatives by chiral schiff bases of calix[4]arene , 2007 .

[9]  J. Harrowfield,et al.  Calix[4]azacrowns: self-assembly and effect of chain length and O-alkylation on their metal ion-binding properties , 2007 .

[10]  M. Yılmaz,et al.  Chiral Schiff base derivatives of calix[4]arene: synthesis and complexation studies with chiral and achiral amines , 2006 .

[11]  A. Demir,et al.  Synthesis and chiral recognition properties of two novel chiral calix[4]arene tartaric ester derivatives , 2006 .

[12]  M. Yılmaz,et al.  Synthesis of new chiral calix[4]arene diamide derivatives for liquid phase extraction of α-amino acid methylesters , 2006 .

[13]  R. Ludwig Calixarenes for Biochemical Recognition and Separation , 2005 .

[14]  O. Chailapakul,et al.  Calix[4]quinones derived from double calix[4]arenes: synthesis, complexation, and electrochemical properties toward alkali metal ions. , 2005, The Journal of organic chemistry.

[15]  A. Samanta,et al.  Calix[4]azacrown and 4-aminophthalimide-appended calix[4]azacrown: synthesis, structure, complexation and fluorescence signaling behaviour. , 2005, Organic & biomolecular chemistry.

[16]  M. Yılmaz,et al.  Synthesis and Metal Ion Recognition Properties of a Novel Chiral Calix[4](azoxa)crown-7 , 2005 .

[17]  R. Mutihac,et al.  Complexation and Separation of Amines, Amino Acids, and Peptides by Functionalized Calix[n]arenes , 2005 .

[18]  J. Lee,et al.  An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor. , 2004, Journal of the American Chemical Society.

[19]  M. Yılmaz,et al.  Synthesis and characterization of a novel chiral chromogenic calix[4](azoxa)crown-7 , 2004 .

[20]  Lin Pu,et al.  Fluorescence of organic molecules in chiral recognition. , 2004, Chemical reviews.

[21]  R. Mutihac,et al.  Some Aspects of Extractability and Transport of Amino Acid Esters by Calixarenes , 2003 .

[22]  M. Kubinyi,et al.  Spectroscopic study on the complex formation of chromogenic bridged calixarenes with aliphatic amines , 2003 .

[23]  F. Sansone,et al.  Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities. , 2003, Accounts of chemical research.

[24]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[25]  Z. Asfari,et al.  Synthesis of tripodal aza crown ether calix[4]arenes and their supramolecular chemistry with transition-, alkali metal ions and anions , 2002 .

[26]  G. Sundararajan,et al.  Asymmetric Michael addition reaction using a chiral catalyst containing amino diol , 2002 .

[27]  Richard J. Fitzmaurice,et al.  Synthetic receptors for carboxylic acids and carboxylates , 2002 .

[28]  J. You,et al.  Novel chiral imidazole cyclophane receptors: synthesis and enantioselective recognition for amino acid derivatives. , 2002, Chemical communications.

[29]  G. Gokel,et al.  Alkali metal cation-pi interactions observed by using a lariat ether model system. , 2001, Journal of the American Chemical Society.

[30]  Kim,et al.  Synthesis and metal ion complexation studies of proton-ionizable calix , 2000, The Journal of organic chemistry.

[31]  Zhan-Ting Li,et al.  Self-Assembling Calix[4]arene [2]Catenanes. Preorganization, Conformation, Selectivity, and Efficiency. , 1999, The Journal of organic chemistry.

[32]  H. Ringsdorf,et al.  Molecular recognition-induced function and competitive replacement by hydrogen-bonding interactions: amphiphilic barbituric acid derivatives, 2,4,6-triaminopyrimidine, and related structures at the air-water interface. , 1999 .

[33]  R. Cleverley,et al.  Thermodynamics of Calixarene Chemistry. , 1998, Chemical reviews.

[34]  K. Ariga,et al.  Molecular Recognition between 2,4,6-Triaminopyrimidine Lipid Monolayers and Complementary Barbituric Molecules at the Air/Water Interface: Effects of Hydrophilic Spacer, Ionic Strength, and pH , 1998 .

[35]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[36]  V. Böhmer,et al.  Cation-π interactions between neutral calix[5]arene hosts and cationic organic guests , 1997 .

[37]  Keiji Hirose,et al.  Preparation of optically active azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunit: temperature-dependent enantiomer selectivity in the complexation with chiral amines1 , 1997 .

[38]  神野 清勝 Chromatographic separations based on molecular recognition , 1997 .

[39]  D. Diamond Calixarene-based sensing agents , 1996 .

[40]  V. Böhmer,et al.  Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[41]  C. Beddell,et al.  The Design of drugs to macromolecular targets , 1992 .

[42]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[43]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .