Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments

[1]  E. Roden,et al.  Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks , 2010, Geobiology.

[2]  A. Czaja,et al.  Iron and carbon isotope evidence for ecosystem and environmental diversity in the ∼ 2.7 to 2.5 Ga Hamersley Province, Western Australia , 2010 .

[3]  C. Vale,et al.  Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment , 2009 .

[4]  E. Roden,et al.  Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite , 2009 .

[5]  A. Kappler,et al.  Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry , 2009 .

[6]  A. Trendall The Significance of Iron‐Formation in the Precambrian Stratigraphic Record , 2009 .

[7]  A. Knoll,et al.  Isotopic Constraints on the Late Archean Carbon Cycle from the Transvaal Supergroup along the Western Margin of the Kaapvaal Craton, South Africa , 2009 .

[8]  J. Kubicki,et al.  Density functional theory predictions of equilibrium isotope fractionation of iron due to redox changes and organic complexation , 2008 .

[9]  E. Roden,et al.  The Iron Isotope Fingerprints of Redox and Biogeochemical Cycling in Modern and Ancient Earth , 2008 .

[10]  B. Kamber,et al.  The iron isotope composition of microbial carbonate , 2008 .

[11]  A. Anbar,et al.  Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition , 2007 .

[12]  E. Roden,et al.  The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens , 2007 .

[13]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[14]  M. Whitehouse,et al.  Micro‐scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean , 2006, Geobiology.

[15]  Jasmine B. D. Jaffrés,et al.  Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater , 2006 .

[16]  R. Byrne,et al.  Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of solution complexation with carbonate , 2006 .

[17]  F. Blanckenburg,et al.  Iron isotopes in the early marine diagenetic iron cycle , 2006 .

[18]  R. Byrne,et al.  Sorption of yttrium and rare earth elements by amorphous ferric hydroxide : Influence of pH and ionic strength , 2006 .

[19]  D. Newman,et al.  Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria , 2005 .

[20]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[21]  E. Roden,et al.  Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. , 2005, Environmental science & technology.

[22]  John W. Morse,et al.  Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C , 2005 .

[23]  A. Kappler,et al.  The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations , 2005 .

[24]  H. Ohmoto,et al.  Biogeochemical cycling of iron in the Archean–Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons , 2005 .

[25]  L. P. Knauth,et al.  Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution , 2005 .

[26]  A. Anbar,et al.  Theoretical investigation of iron isotope fractionation between Fe(H2O)63+ and Fe(H2O)62+: Implications for iron stable isotope geochemistry , 2005 .

[27]  E. Roden,et al.  Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction , 2005 .

[28]  A. Bekker,et al.  Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State , 2004, Science.

[29]  D. Vance,et al.  Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulfate reduction , 2004 .

[30]  B. Beard,et al.  Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems , 2004 .

[31]  V. Bennett,et al.  SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia , 2004 .

[32]  Donald R. Lowe,et al.  Photosynthetic microbial mats in the 3,416-Myr-old ocean , 2004, Nature.

[33]  Yumiko Watanabe,et al.  Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago , 2004, Nature.

[34]  D. Newman,et al.  Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[35]  J. McManus,et al.  Rare earth elements in pore waters of marine sediments , 2004 .

[36]  C. Romanek,et al.  Precipitation kinetics and carbon isotope partitioning of inorganic siderite at 25°C and 1 atm , 2004 .

[37]  K. V. Damm,et al.  Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans , 2003 .

[38]  Henry J Sun,et al.  Application of Fe isotopes to tracing the geochemical and biological cycling of Fe , 2003 .

[39]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[40]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[41]  E. Roden,et al.  Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction , 2002 .

[42]  G. Shields,et al.  Precambrian marine carbonate isotope database: Version 1.1 , 2002 .

[43]  F. Huertas,et al.  Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25°C , 2001 .

[44]  G. Rossman,et al.  Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy , 2001 .

[45]  C. W. Childs,et al.  Demonstration of significant abiotic iron isotope fractionation in nature , 2001 .

[46]  B. Kamber,et al.  The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history , 2001 .

[47]  M. Thiemens,et al.  Oxygen isotopic composition of ferric oxides from recent soil, hydrologic, and marine environments , 2000 .

[48]  B. Kamber,et al.  Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy , 2000 .

[49]  V. Polyakov,et al.  The use of Mössbauer spectroscopy in stable isotope geochemistry , 2000 .

[50]  P. Koch,et al.  Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis , 1999 .

[51]  Derek R. Lovley,et al.  Microbiological evidence for Fe(III) reduction on early Earth , 1998, Nature.

[52]  W. Altermann,et al.  Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U–Pb zircon ages from volcaniclastic sediments , 1998 .

[53]  K. Muehlenbachs The oxygen isotopic composition of the oceans, sediments and the seafloor , 1998 .

[54]  J. Rae,et al.  Effect of bacteria on the elemental composition of early diagenetic siderite: implications for palaeoenvironmental interpretations , 1997 .

[55]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[56]  M. Coleman,et al.  Microbial influence on the oxygen isotopic composition of diagenetic siderite , 1997 .

[57]  A. J. Kaufman Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: an example from the Transvaal Basin, South Africa , 1996 .

[58]  E. S. Cheney Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia , 1996 .

[59]  J. Berry,et al.  Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon , 1993, Plant physiology.

[60]  L. P. Knauth,et al.  Stable isotope geochemistry of cherts and carbonates from the 2.0 Ga gunflint iron formation: implications for the depositional setting, and the effects of diagenesis and metamorphism , 1992 .

[61]  J. Bowles Iron Oxides in the Laboratory , 1992, Mineralogical Magazine.

[62]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[63]  U. Schwertmann,et al.  Iron Oxides in the Laboratory: Preparation and Characterization , 1991 .

[64]  A. J. Kaufman,et al.  Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. , 1991, Precambrian research.

[65]  A. J. Kaufman,et al.  Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. , 1990, Geochimica et cosmochimica acta.

[66]  A. J. Kaufman,et al.  Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. , 1990, Economic geology and the bulletin of the Society of Economic Geologists.

[67]  N. Beukes,et al.  Geochemistry and sedimentology of a facies transition — from microbanded to granular iron-formation — in the early Proterozoic Transvaal Supergroup, South Africa , 1990 .

[68]  N. Beukes,et al.  Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa , 1989 .

[69]  R. Rosenbauer,et al.  Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite , 1988 .

[70]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[71]  H. Elderfield,et al.  Rare earth elements in the pore waters of reducing nearshore sediments , 1987 .

[72]  J. Hayes,et al.  Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. , 1985, Economic geology and the bulletin of the Society of Economic Geologists.

[73]  T. Miyano,et al.  Phase relations of stilpnomelane, ferri-annite, and riebeckite in very low-grade metamorphosed iron-formations , 1984 .

[74]  JAMES C. G. Walker,et al.  Suboxic diagenesis in banded iron formations , 1984, Nature.

[75]  H. Thode,et al.  Further Sulfur and Carbon Isotope Studies of Late Archean Iron-Formations of the Canadian Shield and the Rise of Sulfate Reducing Bacteria , 1983 .

[76]  A. Cairns-smith Precambrian solution photochemistry, inverse segregation, and banded iron formations , 1978, Nature.

[77]  F. C. Tan,et al.  Geology and Stable Isotope Geochemistry of the Biwabik Iron Formation, Northern Minnesota , 1973 .

[78]  R. Clayton,et al.  Carbon isotopic evidence for the origin of a banded iron-formation in Western Australia , 1972 .

[79]  H. Schwarcz,et al.  Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite , 1970 .

[80]  R. Clayton,et al.  Oxygen isotope fractionation in divalent metal carbonates , 1969 .

[81]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[82]  M. Lazzeri,et al.  Theoretical investigation of iron isotope fractionation between pyrite, hematite and siderite , 2010 .

[83]  E. Roden,et al.  Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis , 2008 .

[84]  J. Gutzmer,et al.  Origin and Paleoenvironmental Significance of Major Iron Formations at the Archean-Paleoproterozoic Boundary , 2008 .

[85]  A. Knoll,et al.  An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation , 2006 .

[86]  D. Lovley Biodata of Derek R. Lovley author of "Potential Role of Dissimilatory Iron Reduction in The Early Evolution of Microbial Respiration" , 2004 .

[87]  B. Beard,et al.  Fe Isotope Variations in the Modern and Ancient Earth and Other Planetary Bodies , 2004 .

[88]  M. Bau Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect , 1999 .

[89]  P. Swart The oxygen and hydrogen isotopic composition of the Black Sea , 1991 .

[90]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[91]  W. Ewers Chemical Conditions for the Precipitation of Banded Iron-Formations , 1980 .