Preparation and characterization of magnetic-core titanium dioxide: Implications for photocatalytic removal of ibuprofen

[1]  L. Ren,et al.  One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application. , 2013, Nanoscale.

[2]  A. Wu,et al.  Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. , 2013, Nanoscale.

[3]  Simone Rossi,et al.  Australian Medicines Handbook , 2012 .

[4]  Xiaodan Su,et al.  Superparamagnetic high-magnetization composite microspheres with Fe3O4@SiO2 core and highly crystallized mesoporous TiO2 shell , 2012 .

[5]  Wanchun Guo,et al.  Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application , 2011 .

[6]  Wei Wu,et al.  Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue , 2011, Nanoscale research letters.

[7]  R. Szabó,et al.  Phototransformation of ibuprofen and ketoprofen in aqueous solutions. , 2011, Chemosphere.

[8]  Chen Li,et al.  Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. , 2011, Nanoscale.

[9]  Wanquan Jiang,et al.  Sonochemical synthesis and characterization of magnetic separable Fe3O4–TiO2 nanocomposites and their catalytic properties , 2010 .

[10]  N. Sahiner,et al.  A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols , 2010 .

[11]  P. Plucinski,et al.  Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water , 2010 .

[12]  Ying Dai,et al.  Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles. , 2009, Physical chemistry chemical physics : PCCP.

[13]  I. Alp,et al.  Treatment of cyanide effluents by oxidation and adsorption in batch and column studies. , 2009, Journal of hazardous materials.

[14]  J. Park,et al.  Hybrid Photoreactive Magnet Obtained from Fe3O4/TiO2 Composite Nanoparticles , 2009 .

[15]  Benjamin D. Stanford,et al.  Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. , 2009, Water research.

[16]  A. Schäfer,et al.  The role of NOM fouling for the retention of estradiol and ibuprofen during ultrafiltration , 2009 .

[17]  J. Sekizawa,et al.  Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. , 2009, Water research.

[18]  R. Costo,et al.  Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties. , 2009, 0901.3891.

[19]  J. Xiong,et al.  A novel biomaterial — Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity , 2008 .

[20]  S. Esplugas,et al.  Ultrasonic treatment of water contaminated with ibuprofen. , 2008, Water research.

[21]  S. Esplugas,et al.  Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. , 2008, Water research.

[22]  Pengyuan Yang,et al.  Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. , 2008, Chemical communications.

[23]  Ronald E. Zegers,et al.  Ozone Oxidation of Endocrine Disruptors and Pharmaceuticals in Surface Water and Wastewater , 2006 .

[24]  J. T. Mayo,et al.  Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals , 2006, Science.

[25]  V. Sharma,et al.  Ferrate(VI) oxidation of ibuprofen: A kinetic study , 2006 .

[26]  T. Tuhkanen,et al.  Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. , 2005, Environmental science & technology.

[27]  Menachem Elimelech,et al.  Pharmaceutical retention mechanisms by nanofiltration membranes. , 2005, Environmental science & technology.

[28]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[29]  W. Arnold,et al.  Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen , 2003, Aquatic Sciences.

[30]  Thomas Heberer,et al.  Tracking persistent pharmaceutical residues from municipal sewage to drinking water , 2002 .

[31]  M. Winkler,et al.  Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. , 2001, Water research.

[32]  Ho-In Lee,et al.  Use of Ultrafiltration Membranes for the Separation of TiO2 Photocatalysts in Drinking Water Treatment , 2001 .

[33]  N. Paxéus Organic compounds in municipal landfill leachates , 2000 .

[34]  I. Arslan Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts , 2000 .

[35]  P. F. Greenfield,et al.  Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water , 2000 .

[36]  Christian Zwiener,et al.  Oxidative treatment of pharmaceuticals in water , 2000 .

[37]  Seung-Bin Park,et al.  Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene , 2000 .

[38]  Akira Fujishima,et al.  Photocatalytic Degradation of Gaseous Formaldehyde Using TiO2 Film , 1998 .

[39]  N. Brauner,et al.  Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants , 1997 .

[40]  J. Bearden,et al.  REEVALUATION OF X-RAY ATOMIC ENERGY LEVELS. , 1967 .