Recursive parameter estimation for categorical process control

Statistical process adjustment (SPA) is utilised prevalently in novel manufacturing scenarios. When quality characteristics rather than internal process variables are inspected for the purpose of quality control, data with different resolutions may be collected. This paper proposes a Bayesian framework for parameter estimation when only categorical observations are available. The proposed method incorporates categorical information recursively and updates parameter estimates in real time. Simulation results show that the framework is effective in utilising low-resolution information in parameter estimation, model building and process control.

[1]  Bill Bolstad Bayesian Process Monitoring, Control and Optimization edited by Enrique del Castillo, Bianca M. Colosimo , 2007 .

[2]  Enrique Del Castillo,et al.  Long run and transient analysis of a double EWMA feedback controller , 1999 .

[3]  Chin-Yao Low,et al.  Design for an SPRT control scheme based on linguistic data , 2003 .

[4]  F. Franceschini,et al.  Synthesis maps for multivariate ordinal variables in manufacturing , 2006 .

[5]  Costas J. Spanos,et al.  Using qualitative observations for process tuning and control [IC manufacture] , 1997 .

[6]  C.-H. Jen,et al.  General run-to-run (R2R) control framework using self-tuning control for multiple-input multiple-output (MIMO) processes , 2004 .

[7]  W. Woodall,et al.  A probabilistic and statistical view of fuzzy methods , 1995 .

[8]  Daniel W. Apley,et al.  Cautious Control of Industrial Process Variability With Uncertain Input and Disturbance Model Parameters , 2004, Technometrics.

[9]  Arnon M. Hurwitz,et al.  Run-to-Run Process Control: Literature Review and Extensions , 1997 .

[10]  Shu-Kai S. Fan,et al.  SISO run-to-run feedback controller using triple EWMA smoothing for semiconductor manufacturing processes , 2002 .

[11]  Yick Chuen Chan,et al.  High-throughput design and fabrication of an integrated microsystem with high aspect-ratio sub-micron pillar arrays for free-solution micro capillary electrophoresis , 2006 .

[12]  Armann Ingolfsson,et al.  Stability and Sensitivity of an EWMA Controller , 1993 .

[13]  Bianca Maria Colosimo,et al.  Bayesian Process Monitoring, Control and Optimization , 2006 .

[14]  E. Del Castillo,et al.  Statistical process adjustment: A brief retrospective, current status, and some opportunities for further work , 2006 .

[15]  William R. Rodgers,et al.  Extrusion processing of TPO nanocomposites , 2004 .

[16]  B. M. Colosimo,et al.  Setup adjustment for discrete-part manufacturing processes with asymmetric cost functions , 2005 .

[17]  Fugee Tsung,et al.  Run-to-Run Process Adjustment Using Categorical Observations , 2007 .

[18]  Fugee Tsung,et al.  A study of variable EWMA controller , 2003 .

[19]  S. W. Butler,et al.  Supervisory run-to-run control of polysilicon gate etch using in situ ellipsometry , 1994 .

[20]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.