Single Crystal Growth of FeGa3 and FeGa3−xGex from High‐Temperature Solution Using the Czochralski Method

Single crystal growth and characterization of the binary semiconducting compound FeGa3 and its Ge‐substitute FeGa3–xGex are reported. Whereas there have been several investigations on the thermoelectric properties based on small samples grown by the flux method, this study is the first approach using the Czochralski growth technique from well‐oriented single‐crystalline seeds. Problems and solutions of the growth of cm3‐size single crystals are discussed in detail. Ge segregation in FeGa3–xGex is described by a segregation coefficient lower than unity which leads to an axially increasing Ge content along the pulling direction. Consequences with respect to lattice parameter changes and thermoanalytic measurements are reported.

[1]  Z. Fisk,et al.  Chemical vapor transport of intermetallics , 2019 .

[2]  M. Baenitz,et al.  On Fe-Fe Dumbbells in the Ideal and Real Structures of FeGa3. , 2018, Inorganic chemistry.

[3]  M. Baenitz,et al.  Spin dynamics of FeGa3−xGex studied by electron spin resonance , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  M. A. Bykov,et al.  Crystal growth, electronic structure, and properties of Ni-substituted FeGa3 , 2016 .

[5]  M. Baenitz,et al.  Towards ferromagnetic quantum criticality in FeGa3-xGex: 71Ga NQR as a zero-field microscopic probe , 2015, 1510.01974.

[6]  D. Morelli,et al.  Improved thermoelectric properties in heavily doped FeGa3 , 2015 .

[7]  B. Ramachandran,et al.  Thermoelectric performance of intermetallic FeGa3 with Co doping , 2014 .

[8]  P. Gille,et al.  Single crystal growth of the intermetallic compound InPd , 2014 .

[9]  R. Cardoso‐Gil,et al.  Phonon-drag effect in FeGa3 , 2014, 1405.3152.

[10]  G. Kotliar,et al.  Electronic correlations in FeGa3 and the effect of hole doping on its magnetic properties , 2014, 1405.2369.

[11]  K. Kimura,et al.  Effect of Carrier-Doping on the Thermoelectric Properties of Narrow-Bandgap (Fe,Ru)Ga3 Intermetallic Compounds , 2014, Journal of Electronic Materials.

[12]  M. Baenitz,et al.  Interplay between localized and itinerant magnetism in Co-substituted FeGa3 , 2013, 1311.1501.

[13]  R. Ribeiro,et al.  Thermodynamic and Transport Study of Electron- and Hole-Doped MGa3 Single Crystals (M = Fe, Co) , 2014, Journal of Electronic Materials.

[14]  R. Cardoso‐Gil,et al.  Substitution Solid Solutions FeGa3−xEx and Their Thermoelectric Properties , 2014, Journal of Electronic Materials.

[15]  N. Haldolaarachchige,et al.  Thermoelectric Properties of Intermetallic Semiconducting RuIn3 and Metallic IrIn3 , 2013, 1301.5353.

[16]  Y. Hadano,et al.  Ferromagnetic instability in a doped band gap semiconductor FeGa 3 , 2012, 1210.5360.

[17]  W. Krätschmer,et al.  Intermetallic solid solution Fe1-xCoxGa3 : Synthesis, structure, NQR study and electronic band structure calculations , 2012 .

[18]  Z. Fisk,et al.  Correlation effects in the small gap semiconductor FeGa3 , 2010 .

[19]  S. Narazu,et al.  Thermoelectric and Magnetic Properties of a Narrow-Gap Semiconductor FeGa_3(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2009 .

[20]  P. Gille,et al.  Single crystal growth of Al13Co4 and Al13Fe4 from Al‐rich solutions by the Czochralski method , 2008 .

[21]  Y. Kuo,et al.  Electrical and thermoelectric properties of the intermetallic FeGa3 , 2005 .

[22]  H. Okamoto Fe-Ga (iron-gallium) , 2004 .

[23]  M. Boström,et al.  FeGa3 and RuGa3: Semiconducting intermetallic compounds , 2002 .

[24]  R. Pöttgen,et al.  Structure, Chemical Bonding and Properties of CoIn3, RhIn3, and IrIn3 , 1998 .

[25]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[26]  Zachary Fisk,et al.  Growth of single crystals from metallic fluxes , 1992 .

[27]  H. Scheel,et al.  Accelerated crucible rotation: A novel stirring technique in high-temperature solution growth , 1972 .