Highly NIR-emissive lanthanide polyselenides.

Ln(SePh)(3) (Ln = Ce, Pr, Nd), prepared by reduction of PhSeSePh with elemental Ln and Hg catalyst, reacts with excess elemental Se to give (py)(11)Ln(7)Se(21)HgSePh, an ellipsoidal polyselenide cluster. The molecular structure contains two square arrays of eight- or nine-coordinate Ln fused at one edge to form a V shape that is also capped on the concave side by a centrally located nine-coordinate (Se(3))pyLn(Se(3)) and on the convex side by a 2-fold disordered SeHgSePh. The central Ln coordinates to selenido, triselenido, and pyridine ligands, while all other Ln coordinate to selenido, diselenido, triselenido, and pyridine ligands. Thermal treatment of the Pr compound at 650 °C gave Pr(2)Se(3) and Pr(3)Se(4). NIR emission studies of the Nd compound show four transitions from the excited-state (4)F(3/2) ion to (4)I(9/2), (4)I(11/2), (4)I(13/2), and (4)I(15/2) states. The (4)F(3/2) ion to (4)I(11/2) transition (1075 nm emission) exhibited 43% quantum efficiency. This is the highest quantum efficiency reported for a 'molecular' Nd compound and leads a group of selenide-based clusters that has shown extraordinary quantum efficiency. In terms of efficiency and concentration, these compounds compare favorably with solid-state materials.

[1]  T. Emge,et al.  Lanthanide clusters with chalcogen encapsulated Ln: NIR emission from nanoscale NdSe(x). , 2011, Journal of the American Chemical Society.

[2]  Kieran Norton,et al.  Lanthanide oxochalcogenido clusters. , 2010, Dalton transactions.

[3]  B. Sels,et al.  Transition-metal ions in zeolites: coordination and activation of oxygen. , 2010, Inorganic chemistry.

[4]  A. Powell,et al.  Synthesis and structure of an "iron-doped" copper selenide cluster molecule: [Cu30Fe2Se6(SePh)24(dppm)4]. , 2009, Inorganic chemistry.

[5]  T. Emge,et al.  Lanthanide compounds with fluorinated aryloxide ligands: near-infrared emission from Nd, Tm, and Er. , 2009, Inorganic chemistry.

[6]  C-type Nd2Se3 , 2009, Acta crystallographica. Section E, Structure reports online.

[7]  T. Emge,et al.  Intense near-IR emission from nanoscale lanthanoid fluoride clusters. , 2008, Angewandte Chemie.

[8]  T. Emge,et al.  Thiolate-Bound Thulium Compounds: Synthesis, Structure, and NIR Emission , 2008 .

[9]  A. Nozik Multiple exciton generation in semiconductor quantum dots , 2008 .

[10]  D. Stalke,et al.  Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. , 2008, Angewandte Chemie.

[11]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[12]  P. B. Glover,et al.  Fully fluorinated imidodiphosphinate shells for visible- and NIR-emitting lanthanides: hitherto unexpected effects of sensitizer fluorination on lanthanide emission properties. , 2007, Chemistry.

[13]  E. Rafailov,et al.  Mode-locked quantum-dot lasers , 2007 .

[14]  T. Emge,et al.  Near-Infrared Optical Characteristics of Chalcogenide-Bound Nd3+ Molecules and Clusters , 2007 .

[15]  T. Emge,et al.  Oxoclusters of the lanthanides begin to resemble solid-state materials at very small cluster sizes: structure and NIR emission from Nd(III). , 2007, Journal of the American Chemical Society.

[16]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[17]  J. Ballato,et al.  OPTICAL CHARACTERIZATION OF INFRARED EMITTING RARE-EARTH-DOPED FLUORIDE NANOCRYSTALS AND THEIR TRANSPARENT NANOCOMPOSITES , 2007 .

[18]  J. Ballato,et al.  Infrared fluorescence and optical gain characteristics of chalcogenide-bound erbium cluster-fluoropolymer nanocomposites , 2006 .

[19]  J. Bünzli,et al.  Fluorinated β-Diketones for the Extraction of Lanthanide Ions: Photophysical Properties and Hydration Numbers of Their EuIII Complexes , 2006 .

[20]  T. Emge,et al.  Oxoselenido clusters of the lanthanides: rational introduction of oxo ligands and near-IR emission from Nd(III). , 2005, Journal of the American Chemical Society.

[21]  T. Emge,et al.  Heterometallic chalcogenido clusters containing lanthanides and main group metals: emissive precursors to ternary solid-state compounds. , 2005, Journal of the American Chemical Society.

[22]  R. Riman,et al.  Chalcogenide-Bound Erbium Complexes: Paradigm Molecules for Infrared Fluorescence Emission , 2005 .

[23]  A. Eichhöfer,et al.  Syntheses and crystal structures of [Ag123S35(StBu)50] and [Ag344S124(StBu)96]. , 2005, Angewandte Chemie.

[24]  T. Emge,et al.  Lanthanide clusters with internal Ln: fragmentation and the formation of dimers with bridging Se(2-) and Se2(2-) ligands. , 2005, Inorganic chemistry.

[25]  Synthesis and structural characterization of some selenoruthenates and telluroruthenates. , 2005, Inorganic chemistry.

[26]  Alain Brenier,et al.  Optical properties of neodymium oxides at the nanometer scale , 2005 .

[27]  T. Emge,et al.  Lanthanide clusters with internal Ln ions: highly emissive molecules with solid-state cores. , 2005, Journal of the American Chemical Society.

[28]  K. Binnemans,et al.  Strong erbium luminescence in the near-infrared telecommunication window , 2004 .

[29]  T. Emge,et al.  Heterometallic Ln/Hg compounds with fluorinated thiolate ligands. , 2004, Inorganic chemistry.

[30]  Hai Ming,et al.  Optical studies of Er(DBM)3Phen containing methyl methacrylate solution and poly(methyl methacrylate) matrix , 2004 .

[31]  Jianping Xie,et al.  Optical transition probability of the Er3+ ion in Er(DBM)3phen-doped poly(methyl methacrylate) , 2004 .

[32]  Hui Zhao,et al.  Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber. , 2004, Optics letters.

[33]  T. Emge,et al.  Lanthanide-transition metal chalcogenido cluster materials. , 2003, Inorganic chemistry.

[34]  Xingsheng Xu Properties of Nd3+-doped polymer optical fiber amplifiers , 2003 .

[35]  Y. Koike,et al.  Observation of fluorescence in an optically pumped erbium-containing perfluorinated medium at 1.5 microm. , 2003, Optics letters.

[36]  Animesh Jha,et al.  Compositional effects and spectroscopy of rare earths (Er3+, Tm3+, and Nd3+) in tellurite glasses , 2002 .

[37]  M. Fitzgerald,et al.  Chalcogen-rich lanthanide clusters with fluorinated thiolate ligands. , 2002, Inorganic chemistry.

[38]  J. W. Stouwdam,et al.  Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles , 2002 .

[39]  D. Fenske,et al.  Synthesis and Structures of Silver–Selenide Cluster Complexes [Ag4(SeiPr)4(dppm)2], [Ag8(SeEt)8(dppp)]∞, [Ag28Se6(SenBu)16(dppp)4], and [Ag124Se57(SePtBu2)4Cl6(tBu2P(CH2)3PtBu2)12] This work was supported by the Deutsche Forschungsgemeinschaft (SFB 195) and the Fonds der Chemischen Industrie. dppm=b , 2002 .

[40]  T. Emge,et al.  Chalcogen rich lanthanide clusters from halide starting materials (II): selenido compounds. , 2002, Inorganic chemistry.

[41]  T. Emge,et al.  Chalcogen-rich lanthanide clusters: compounds with Te(2-), (TeTe)(2-), TePh, TeTePh, (TeTeTe(Ph)TeTe)(5-), and [(TeTe)(4)TePh](9-) ligands; single source precursors to solid-state lanthanide tellurides. , 2002, Inorganic chemistry.

[42]  T. Emge,et al.  Chalcogen-rich lanthanide clusters: cluster reactivity and the influence of ancillary ligands on structure. , 2001, Journal of the American Chemical Society.

[43]  D. Reinhoudt,et al.  Increased Luminescent Lifetimes of Ln3+ Complexes Emitting in the Near‐Infrared as a Result of Deuteration , 2001 .

[44]  G. Jin,et al.  Synthesis and characterization of polynuclear half-sandwich lanthanoid complexes [Na(THF)6]2[Cpt6Sm6Se13] and [Li(THF)4]2[Cp6Nd6Se13] , 2001 .

[45]  J. Legendziewicz,et al.  Correlation between spectroscopic characteristics and structure of lanthanide phosphoro-azo derivatives of β-diketones , 2001 .

[46]  D. Fenske,et al.  Zinktellurido‐Cluster mit Tellurido‐ bzw. Telluridound Organyltellurolatliganden. Die Kristallstrukturen von {[Zn10Te4(TePh)12(PnPr3)4]2[Zn14Te13(tmeda)6][Fe(CO)4SiMe3]2}, [Zn16Te13(TePh)6(tmeda)5], [Zn(TePh)2(tmeda)], [Zn14Te13Cl2(tmeda)6] · [ZnCl2(tmeda)], [Zn14Te13(TeMes)(tmeda)6][Zn(TeMes)3] und , 2001 .

[47]  X. Chen,et al.  Rb(4)Hg(5)(Te(2))(2)(Te(3))(2)Te(3), [Zn(en)3](4)In(16)(Te2)4(Te3)Te22, and K2Cu2(Te2)(Te3): novel metal polytellurides with unusual metal-tellurium coordination. , 2001, Inorganic chemistry.

[48]  R. Ahlrichs,et al.  Synthesis, Crystal Structure, and Binding Properties of the Mixed Valence Clusters [Cu32 As30 (dppm)8 ] and [Cu26 Te12 (PEt2 Ph)12 ]. , 2000, Angewandte Chemie.

[49]  V. Ovchynnikov,et al.  Spectroscopic characterization of lanthanide complexes with N,N′-tetraethyl-N′′-benzoylphosphoryltriamide. Crystal structure of tris(N,N′-tetraethyl-N′′-benzoylphosphoryltriamide) cerium(III) trinitrate complex , 2000 .

[50]  Y. Koike,et al.  Fabrication and properties of polymer optical fibers containing Nd-chelate , 2000, IEEE Photonics Technology Letters.

[51]  G. Oczko Spectroscopic properties of neodymium monochloroacetate single crystal as an example of complex containing Nd(III) in three different symmetry sites , 2000 .

[52]  S. Lis Applications of spectroscopic methods in studies of polyoxometalates and their complexes with lanthanide(III) ions , 2000 .

[53]  Wada,et al.  Luminescence of Novel Neodymium Sulfonylaminate Complexes in Organic Media. , 2000, Angewandte Chemie.

[54]  J. Ziller,et al.  The Trivalent Neodymium Complex [(C5 Me5 )3 Nd] Is a One-Electron Reductant! , 1999, Angewandte Chemie.

[55]  G. Jin,et al.  Synthesis and X-ray Structure of a Highly Symmetrical Selenium-Centered Hexanuclear Neodymium Complex, [Cpt6Nd6Se13]- (Cpt = η5-ButC5H4)† , 1999 .

[56]  N. Zhu,et al.  Novel Cu–Se clusters with Se–layer structures: [Cu32Se7(SenBu)18(PiPr3)6], [Cu50Se20(SetBu)10(PiPr3)10], [Cu73Se35(SePh)3(PiPr3)21], [Cu140Se70(PEt3)34] and [Cu140Se70(PEt3)36] , 1999 .

[57]  C. G. Pernin,et al.  Octanuclear Rare-Earth Clusters , 1999 .

[58]  R. Longo,et al.  Synthesis, X-ray Structure, Spectroscopic Characterization, and Theoretical Prediction of the Structure and Electronic Spectrum of Eu(btfa)(3).bipy and an Assessment of the Effect of Fluorine as a beta-Diketone Substituent on the Ligand-Metal Energy Transfer Process. , 1998, Inorganic chemistry.

[59]  D. Fenske,et al.  New Iron-Mercury Clusters: [Hg7 {Fe(CO)4 }5 (StBu)3 Cl], [Hg14 Fe12 {Fe(CO)4 }6 S6 (StBu)8 Br18 ], and [Hg39 Fe8 {Fe(CO)4 }18 S8 (StBu)14 Br28 ]. , 1998, Angewandte Chemie.

[60]  S. Payne,et al.  Picosecond nonradiative processes in neodymium-doped crystals and glasses:: Mechanism for the energy gap law , 1998 .

[61]  James R. Heath,et al.  Covalency in semiconductor quantum dots , 1998 .

[62]  T. Emge,et al.  UNEXPECTED SYNTHETIC ROUTES TO LANTHANIDE CHALCOGENIDO CLUSTERS: SM8SE6(SEPH)12(THF)8 AND SM7S7(SEPH)6(DME)7+ , 1997 .

[63]  T. Emge,et al.  HETEROMETALLIC LANTHANIDE-GROUP 14 METAL CHALCOGENOLATES , 1997 .

[64]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[65]  J. Ibers,et al.  The New Octanuclear Europium Cluster Eu8(DMF)13(μ4-O)(μ3-OH) 12(Se3)(Se4)2(Se5) 2 Comprising Oxo, Hydroxo, and Polyselenido Ligands , 1997 .

[66]  A. Eichhöfer,et al.  Synthesis and Structure of the Nanoclusters [Hg32Se14(SePh)36], [Cd32Se14(SePh)36-(PPh3)4],[P(Et)2(Ph)C4H8OSiMe3]5- [Cd18I17(PSiMe3)12], and [N(Et)3C4H8OSiMe3]5[Cd18I17(PSiMe3)12]† , 1996 .

[67]  M. N. Burnett,et al.  ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations , 1996 .

[68]  Tatsuhiko Yamanaka,et al.  Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent , 1996 .

[69]  P. Dorhout,et al.  Hydrothermal Synthesis of a Novel Se12 Ring in [{(NH4)2[Mo3S11.72Se1.28]}2[Se12]] , 1995 .

[70]  J. Brennan,et al.  HETEROMETALLIC EU/M(II) BENZENETHIOLATES (M = ZN, CD, HG) : SYNTHESIS, STRUCTURE, AND THERMOLYSIS CHEMISTRY , 1995 .

[71]  T. Emge,et al.  Lanthanide-Group 12 Metal Chalcogenolates: A Versatile Class of Compounds , 1995 .

[72]  G. Wiegers,et al.  CRYSTAL-STRUCTURE OF ERBIUM SESQUISELENIDE, ER2SE3 , 1995 .

[73]  J. Ziller,et al.  Polynuclear Lanthanide Complexes: Formation of a Selenium‐Centered Sm6 Complex, [{(C5Me5)Sm}6Se11] , 1994 .

[74]  T. Emge,et al.  Heterometallic rare earth/group II metal chalcogenolate clusters , 1994 .

[75]  J. Ziller,et al.  Utility of organosamarium(II) reagents in the formation of polyatomic group 16 element anions : synthesis and structure of [(C5Me5)2Sm]2(E3)(THF), [(C5Me5)2Sm(THF)]2(E), and related species (E=S,Se,Te) , 1994 .

[76]  M. Kanatzidis,et al.  Coordination chemistry of heavy polychalcogenide ligands , 1994 .

[77]  J. Kolis Coordination Chemistry of Polychalcogen Anions and Transition Metal Carbonyls , 1990 .

[78]  E. Bucher,et al.  Temperature induced symmetry transformation in the Th3P4 type compounds La3S4, La3Se4, Pr3S4 and Pr3Se4 , 1975 .

[79]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[80]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .