Molecular dynamics simulations of proteins in lipid bilayers.

With recent advances in X-ray crystallography of membrane proteins promising many new high-resolution structures, molecular dynamics simulations will become increasingly valuable for understanding membrane protein function, as they can reveal the dynamic behavior concealed in the static structures. Dramatic increases in computational power, in synergy with more efficient computational methodologies, now allow us to carry out molecular dynamics simulations of any structurally known membrane protein in its native environment, covering timescales of up to 0.1 micros. At the frontiers of membrane protein simulations are ion channels, aquaporins, passive and active transporters, and bioenergetic proteins.

[1]  J. C. Phillips,et al.  Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane , 2001 .

[2]  Klaus Schulten,et al.  Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. , 2002, Biophysical journal.

[3]  K. Schulten,et al.  Electrostatic tuning of permeation and selectivity in aquaporin water channels. , 2003, Biophysical journal.

[4]  José D Faraldo-Gómez,et al.  Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. , 2003, Biophysical journal.

[5]  A. Mark,et al.  Simulation of MscL gating in a bilayer under stress. , 2003, Biophysical journal.

[6]  Christian Kandt,et al.  Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein , 2004, Proteins.

[7]  M. Sansom,et al.  Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1. , 2004, Biophysical journal.

[8]  Donald E Elmore,et al.  Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. , 2003, Biophysical journal.

[9]  José D Faraldo-Gómez,et al.  OmpA: a pore or not a pore? Simulation and modeling studies. , 2002, Biophysical journal.

[10]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Ilya A. Balabin,et al.  Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. , 2004, Biophysical journal.

[12]  C. Ramseyer,et al.  Targeted molecular dynamics of an open-state KcsA channel. , 2005, The Journal of chemical physics.

[13]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[14]  K. Schulten,et al.  Energetics of glycerol conduction through aquaglyceroporin GlpF , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  K. Schulten,et al.  Gating of MscL studied by steered molecular dynamics. , 2003, Biophysical journal.

[16]  M. Sansom,et al.  Potassium channel, ions, and water: simulation studies based on the high resolution X-ray structure of KcsA. , 2003, Biophysical journal.

[17]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[18]  Thomas B Woolf,et al.  Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change. , 2003, Journal of molecular biology.

[19]  D. Tieleman,et al.  Computer simulation of the KvAP voltage‐gated potassium channel: steered molecular dynamics of the voltage sensor , 2004, FEBS letters.

[20]  K. Schulten,et al.  Molecular dynamics study of aquaporin‐1 water channel in a lipid bilayer , 2001, FEBS letters.

[21]  M. Sansom,et al.  Molecular dynamics simulations of GlpF in a micelle vs in a bilayer: conformational dynamics of a membrane protein as a function of environment. , 2005, The journal of physical chemistry. B.

[22]  Kaihsu Tai,et al.  Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions. , 2005, Biophysical journal.

[23]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Sansom,et al.  Homology modelling and molecular dynamics simulations: comparative studies of human aquaporin-1 , 2004, European Biophysics Journal.

[25]  Sergei Sukharev,et al.  Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. , 2004, Biophysical journal.

[26]  Ursula Rothlisberger,et al.  Early steps of the intramolecular signal transduction in rhodopsin explored by molecular dynamics simulations. , 2002, Biochemistry.

[27]  E. Tajkhorshid,et al.  Molecular basis of proton blockage in aquaporins. , 2004, Structure.

[28]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[29]  K. Schulten,et al.  Pressure-induced water transport in membrane channels studied by molecular dynamics. , 2002, Biophysical journal.

[30]  K. Schulten,et al.  Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics. , 2003, Biophysical journal.

[31]  Donald Bashford,et al.  Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle. , 2003, Journal of molecular biology.

[32]  Marc Baaden,et al.  A molecular dynamics investigation of mono and dimeric states of the outer membrane enzyme OMPLA. , 2003, Journal of molecular biology.

[33]  K. Schulten,et al.  Role of water in transient cytochrome c2 docking , 2004 .

[34]  P. Crozier,et al.  How environment supports a state: molecular dynamics simulations of two states in bacteriorhodopsin suggest lipid and water compensation. , 2004, Biophysical journal.

[35]  Klaus Schulten,et al.  Lipid bilayer pressure profiles and mechanosensitive channel gating. , 2004, Biophysical journal.

[36]  K. Schulten,et al.  Theory and simulation of water permeation in aquaporin-1. , 2004, Biophysical journal.

[37]  Marc Baaden,et al.  OmpT: molecular dynamics simulations of an outer membrane enzyme. , 2004, Biophysical journal.

[38]  B. L. de Groot,et al.  The mechanism of proton exclusion in the aquaporin-1 water channel. , 2003, Journal of molecular biology.

[39]  Klaus Gerwert,et al.  Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. , 2004, Biophysical journal.

[40]  Helmut Grubmüller,et al.  The dynamics and energetics of water permeation and proton exclusion in aquaporins. , 2005, Current opinion in structural biology.

[41]  D Peter Tieleman,et al.  Orientation and interactions of dipolar molecules during transport through OmpF porin , 2002, FEBS letters.

[42]  K. Schulten,et al.  What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. , 2005, Structure.

[43]  B. L. de Groot,et al.  A refined structure of human aquaporin‐1 , 2001, FEBS letters.

[44]  K. Schulten,et al.  Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. , 2004, Biophysical journal.

[45]  Michele Cascella,et al.  Dynamics and energetics of water permeation through the aquaporin channel , 2004, Proteins.

[46]  B. Roux,et al.  Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands , 2004, Nature.

[47]  Hualiang Jiang,et al.  Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study. , 2005, Journal of the American Chemical Society.

[48]  K. Schulten,et al.  The mechanism of proton exclusion in aquaporin channels , 2004, Proteins.

[49]  Patrick Polzer,et al.  Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus , 2005, Science.

[50]  M. Sansom,et al.  Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. , 2003, Journal of molecular biology.

[51]  K. Schulten,et al.  The mechanism of glycerol conduction in aquaglyceroporins. , 2001, Structure.

[52]  Alessandro Laio,et al.  Microscopic Mechanism of Antibiotics Translocation through a Porin. , 2004, Biophysical journal.

[53]  T. Huber,et al.  Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. , 2004, Biophysical journal.

[54]  V. Gordeliy,et al.  Water molecules and hydrogen-bonded networks in bacteriorhodopsin--molecular dynamics simulations of the ground state and the M-intermediate. , 2005, Biophysical journal.

[55]  Klaus Schulten,et al.  Mechanism of anionic conduction across ClC. , 2004, Biophysical journal.

[56]  Ichiro Yamato,et al.  Structure of the Rotor of the V-Type Na+-ATPase from Enterococcus hirae , 2005, Science.

[57]  Ronald M. Welch,et al.  Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests , 2001, Science.

[58]  Shin-Ho Chung,et al.  Influence of protein flexibility on the electrostatic energy landscape in gramicidin A , 2005, European Biophysics Journal.

[59]  A. Warshel,et al.  What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. , 2003, Biophysical journal.

[60]  K. Schulten,et al.  Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning , 2002, Science.

[61]  Benoît Roux,et al.  A gate in the selectivity filter of potassium channels. , 2005, Structure.

[62]  Klaus Schulten,et al.  Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. , 2005, Biophysical journal.

[63]  David L Bostick,et al.  Exterior site occupancy infers chloride-induced proton gating in a prokaryotic homolog of the ClC chloride channel. , 2004, Biophysical journal.