‘Multi-omic’ data analysis using O-miner

Abstract Innovations in -omics technologies have driven advances in biomedical research. However, integrating and analysing the large volumes of data generated from different high-throughput -omics technologies remain a significant challenge to basic and clinical scientists without bioinformatics skills or access to bioinformatics support. To address this demand, we have significantly updated our previous O-miner analytical suite, to incorporate several new features and data types to provide an efficient and easy-to-use Web tool for the automated analysis of data from ‘-omics’ technologies. Created from a biologist’s perspective, this tool allows for the automated analysis of large and complex transcriptomic, genomic and methylomic data sets, together with biological/clinical information, to identify significantly altered pathways and prioritize novel biomarkers/targets for biological validation. Our resource can be used to analyse both in-house data and the huge amount of publicly available information from array and sequencing platforms. Multiple data sets can be easily combined, allowing for meta-analyses. Here, we describe the analytical pipelines currently available in O-miner and present examples of use to demonstrate its utility and relevance in maximizing research output. O-miner Web server is free to use and is available at http://www.o-miner.org.

[1]  C. Mathers,et al.  Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 , 2015, International journal of cancer.

[2]  Emily Sohn,et al.  Screening: Diagnostic dilemma , 2015, Nature.

[3]  Daniel Birnbaum,et al.  A gene expression signature identifies two prognostic subgroups of basal breast cancer , 2011, Breast Cancer Research and Treatment.

[4]  A. Oshlack,et al.  SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips , 2012, Genome Biology.

[5]  Anders Isaksson,et al.  Allele-specific copy number analysis of tumor samples with aneuploidy and tumor heterogeneity , 2011, Genome Biology.

[6]  X. M. Li,et al.  Identification of commonly dysregulated genes in colorectal cancer by integrating analysis of RNA-Seq data and qRT-PCR validation , 2015, Cancer Gene Therapy.

[7]  Z. Hall Cancer , 1906, The Hospital.

[8]  Wessel N. van Wieringen,et al.  CGHregions: Dimension Reduction for Array CGH Data with Minimal Information Loss , 2007 .

[9]  Andrew E. Teschendorff,et al.  ChAMP: 450k Chip Analysis Methylation Pipeline , 2014, Bioinform..

[10]  Lincoln Stein,et al.  Reactome pathway analysis: a high-performance in-memory approach , 2017, BMC Bioinformatics.

[11]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[12]  K. Jirström,et al.  Cartilage oligomeric matrix protein contributes to the development and metastasis of breast cancer , 2016, Oncogene.

[13]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[14]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[15]  Keith R Solomon,et al.  Cholesterol and prostate cancer. , 2012, Current opinion in pharmacology.

[16]  Eric Y. Chuang,et al.  Concurrent Gene Signatures for Han Chinese Breast Cancers , 2013, PloS one.

[17]  Adam L. Asare,et al.  Power enhancement via multivariate outlier testing with gene expression arrays , 2009, Bioinform..

[18]  M. A. van de Wiel,et al.  CGHregions: Dimension Reduction for Array CGH Data with Minimal Information Loss , 2007, Cancer informatics.

[19]  C. Horvath,et al.  Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors , 2014, Proceedings of the National Academy of Sciences.

[20]  Rosa D. Hernansaiz-Ballesteros,et al.  Babelomics 5.0: functional interpretation for new generations of genomic data , 2015, Nucleic Acids Res..

[21]  P. Grambsch,et al.  A Package for Survival Analysis in S , 1994 .

[22]  Terence P. Speed,et al.  Estimation and assessment of raw copy numbers at the single locus level , 2008, Bioinform..

[23]  G. Getz,et al.  Inferring tumour purity and stromal and immune cell admixture from expression data , 2013, Nature Communications.

[24]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[25]  M. Freeman,et al.  Cholesterol and prostate cancer , 2004, Journal of cellular biochemistry.

[26]  Francesco Marabita,et al.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data , 2012, Bioinform..

[27]  Rosalind J. Cutts,et al.  O-miner: an integrative platform for automated analysis and mining of -omics data , 2012, Nucleic Acids Res..

[28]  M. Shen,et al.  Molecular genetics of prostate cancer: new prospects for old challenges. , 2010, Genes & development.

[29]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[30]  C. Bieberich,et al.  MYC and Prostate Cancer. , 2010, Genes & cancer.

[31]  O. Klezovitch,et al.  Hepsin promotes prostate cancer progression and metastasis. , 2004, Cancer cell.

[32]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[33]  C. Perou,et al.  Allele-specific copy number analysis of tumors , 2010, Proceedings of the National Academy of Sciences.

[34]  Henrik Bengtsson,et al.  CalMaTe: a method and software to improve allele-specific copy number of SNP arrays for downstream segmentation , 2012, Bioinform..

[35]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[36]  Kai Wang,et al.  wANNOVAR: annotating genetic variants for personal genomes via the web , 2012, Journal of Medical Genetics.

[37]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[38]  Anders Isaksson,et al.  Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue , 2013, Genome Biology.

[39]  C. Sotiriou,et al.  Evaluation of the Infinium Methylation 450K technology. , 2011, Epigenomics.

[40]  Nam Jin Yoo,et al.  Down-regulation of ROBO2 Expression in Prostate Cancers , 2013, Pathology & Oncology Research.

[41]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[42]  Audrey Kauffmann,et al.  Bioinformatics Applications Note Arrayqualitymetrics—a Bioconductor Package for Quality Assessment of Microarray Data , 2022 .

[43]  A. Børresen-Dale,et al.  Copynumber: Efficient algorithms for single- and multi-track copy number segmentation , 2012, BMC Genomics.

[44]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[45]  Arcadi Navarro,et al.  The European Genome-phenome Archive of human data consented for biomedical research , 2015, Nature Genetics.

[46]  Jonathan M. Garibaldi,et al.  ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization , 2009, BMC Bioinformatics.

[47]  Frank Smit,et al.  The role of HOXC6 in prostate cancer development , 2015, The Prostate.

[48]  J. Schalken,et al.  The use of PCA3 in the diagnosis of prostate cancer , 2009, Nature Reviews Urology.

[49]  Vijayalakshmi Ananthanarayanan,et al.  Alpha‐methylacyl‐CoA racemase (AMACR) expression in normal prostatic glands and high‐grade prostatic intraepithelial neoplasia (HGPIN): Association with diagnosis of prostate cancer , 2005, The Prostate.

[50]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[51]  John M. Asara,et al.  The Role of the Transcription Factor SIM2 in Prostate Cancer , 2011, PloS one.

[52]  G. Haas,et al.  The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. , 1993, The Journal of urology.