Asymptotic stability of the spectrum of a parametric family of homogenization problems associated with a perforated waveguide

In this paper, we provide uniform bounds for convergence rates of the low frequencies of a parametric family of problems for the Laplace operator posed on a rectangular perforated domain of the plane of height $H$. The perforations are periodically placed along the ordinate axis at a distance $O(\epsilon)$ between them, where $\epsilon$ is a parameter that converges towards zero. Another parameter $\eta$, the Floquet-parameter, ranges in the interval $[-\pi, \pi]$. The boundary conditions are quasi-periodicity conditions on the lateral sides of the rectangle and Neumann over the rest. We obtain precise bounds for convergence rates which are uniform on both parameters $\epsilon$ and $\eta$ and strongly depend on $H$. As a model problem associated with a waveguide, one of the main difficulties in our analysis comes near the nodes of the limit dispersion curves.

[1]  S. Nazarov,et al.  Spectral gaps in a double-periodic perforated Neumann waveguide , 2021, Asymptotic Analysis.

[2]  D. Gómez,et al.  Remark on Justification of Asymptotics of Spectra of Cylindrical Waveguides with Periodic Singular Perturbations of Boundary and Coefficients , 2021, Journal of Mathematical Sciences.

[3]  Sergei A. Nazarov,et al.  Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations , 2019, Networks Heterog. Media.

[4]  S. Nazarov Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide , 2013 .

[5]  S. Nazarov The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids , 2012 .

[6]  Konstantin Pankrashkin,et al.  Gap opening and split band edges in waveguides coupled by a periodic system of small windows , 2012, 1203.0201.

[7]  O. Oleinik,et al.  Mathematical Problems in Elasticity and Homogenization , 2012 .

[8]  S. A. Nazarov,et al.  A gap in the spectrum of the Neumann–Laplacian on a periodic waveguide , 2011, 1110.5990.

[9]  S. Nazarov Opening of a gap in the continuous spectrum of a periodically perturbed waveguide , 2010 .

[10]  E. Pérez On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem , 2007 .

[11]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[12]  Grégoire Allaire,et al.  BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .

[13]  M. Lobo,et al.  On the local vibrations for systems with many concentrated masses , 1997 .

[14]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[15]  Vladimir F. Lazutkin,et al.  Kam Theory and Semiclassical Approximations to Eigenfunctions , 1993 .

[16]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[17]  Dominique Leguillon,et al.  Computation of singular solutions in elliptic problems and elasticity , 1987 .

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[20]  S. Nazarov,et al.  On the Polarization Matrix for a Perforated Strip , 2019, Integral Methods in Science and Engineering.

[21]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[22]  Mandy Berg Vibration And Coupling Of Continuous Systems Asymptotic Methods , 2016 .

[23]  O. Oleinik,et al.  On homogenization of solutions of boundary value problems in domains, perforated along manifolds , 1997 .

[24]  C. Conca,et al.  Fluids And Periodic Structures , 1995 .

[25]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[26]  M. M. Skriganov,et al.  Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .

[27]  J. Sanchez-Hubert,et al.  Ondes élastiques dans une bande périodique , 1986 .