Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver’s quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

[1]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[2]  Yonggang Wang,et al.  FPGA based digital phase-coding quantum key distribution system , 2015 .

[3]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[4]  B. A. Nguyen,et al.  Joint remote state preparation , 2008 .

[5]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[6]  Ru Zhang,et al.  One-step hyperentanglement purification and hyperdistillation with linear optics. , 2015, Optics express.

[7]  Fuguo Deng,et al.  Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity , 2008, 0805.0032.

[8]  Xue-ke Song,et al.  Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm , 2015, 1509.00097.

[9]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[10]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[11]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[12]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[13]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[14]  Fuguo Deng,et al.  Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities , 2015, 1511.00087.

[15]  Lan Zhou,et al.  Feasible logic Bell-state analysis with linear optics , 2015, Scientific Reports.

[16]  G. Long,et al.  Parallel Quantum Computing in a Single Ensemble Quantum Computer , 2003, quant-ph/0307055.

[17]  An Min Wang,et al.  Remote implementations of partially unknown quantum operations of multiqubits , 2005, quant-ph/0510209.

[18]  Qi Guo,et al.  Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities , 2015, Scientific Reports.

[19]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[20]  Shen-Shen Yang,et al.  High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution , 2015 .

[21]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[22]  Qing Ai,et al.  Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics , 2016, 1602.00050.

[23]  Qing Ai,et al.  Erratum: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics [Phys. Rev. A93, 052324 (2016)] , 2016 .

[24]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[25]  Cao Thi Bich,et al.  Deterministic joint remote state preparation , 2011 .

[26]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[27]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[28]  Rubens Viana Ramos,et al.  Two-layer quantum key distribution , 2015, Quantum Inf. Process..

[29]  Anthony Leverrier,et al.  Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction. , 2017, Physical review letters.

[30]  Hua-Qiu Liang,et al.  Effects of noises on joint remote state preparation via a GHZ-class channel , 2015, Quantum Inf. Process..

[31]  Fu-Guo Deng,et al.  Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime , 2014, 1411.0274.

[32]  Hong Lu,et al.  Deterministic and controlled many-to-one and one-to-many remote quantum rotations via partially entangled quantum channels , 2014 .

[33]  Fu-Guo Deng,et al.  Robust hyperparallel photonic quantum entangling gate with cavity QED. , 2017, Optics express.

[34]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[35]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[36]  Fu-Guo Deng,et al.  Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities , 2014, 1409.0270.

[37]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[38]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[39]  Guang-Can Guo,et al.  Teleporting a rotation on remote photons , 2005 .

[40]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[41]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[42]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[43]  Yuan-hua Li,et al.  Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments , 2016, Quantum Inf. Process..

[44]  Qian Liu,et al.  Efficient hyperentanglement purification for two-photon six-qubit quantum systems , 2016 .

[45]  Tommaso F. Demarie,et al.  Universality of quantum computation with cluster states and (X, Y)-plane measurements , 2016, Scientific Reports.

[46]  An Min Wang Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states , 2007 .

[47]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[48]  Xing Xiao,et al.  Enhancing teleportation of quantum Fisher information by partial measurements , 2015, 1510.07359.

[49]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[50]  Wei Huang,et al.  Improved multiparty quantum key agreement in travelling mode , 2016, Science China Physics, Mechanics & Astronomy.

[51]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[52]  QiuBo Fan,et al.  Controlled remote implementation of partially unknown quantum operation , 2008 .

[53]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[54]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[55]  Wei Chen,et al.  Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics , 2015 .

[56]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[57]  Guang-Can Guo,et al.  Experimental teleportation of a quantum controlled-NOT gate. , 2004, Physical review letters.

[58]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.

[59]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[60]  Shohini Ghose,et al.  Hyperentanglement concentration for time-bin and polarization hyperentangled photons , 2015, 1502.02891.

[61]  Tzonelih Hwang,et al.  Multiparty quantum remote control , 2013, Quantum Inf. Process..

[62]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[63]  Yan Xia,et al.  Multiparty remote state preparation , 2007 .

[64]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[65]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[66]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[67]  Lan Zhou,et al.  Two-step complete polarization logic Bell-state analysis , 2014, Scientific Reports.

[68]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[69]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[70]  Yimin Liu,et al.  Deterministic single-qubit operation sharing with five-qubit cluster state , 2013, Quantum Inf. Process..

[71]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[72]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[73]  Peter Wittek,et al.  Inductive Supervised Quantum Learning. , 2017, Physical review letters.

[74]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[75]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[76]  Jian Peng,et al.  Tripartite operation sharing with five-qubit Brown state , 2016, Quantum Inf. Process..

[77]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[78]  S. Huelga,et al.  Remote control of restricted sets of operations: Teleportation of Angles , 2001, quant-ph/0107110.

[79]  Gui-Lu Long,et al.  Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities , 2016 .

[80]  William K. Wootters,et al.  Erratum: Remote State Preparation [Phys. Rev. Lett. 87, 077902 (2001)] , 2002 .

[81]  Daoyi Dong,et al.  A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states , 2012 .

[82]  Wang An-min,et al.  Scheme for Remote Implementation of Partially Unknown Quantum Operation of Two Qubits in Cavity QED , 2008 .

[83]  Bao-Cang Ren,et al.  Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates , 2015, Scientific Reports.

[84]  Cong Cao,et al.  Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. , 2013, Optics express.

[85]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[86]  P. Zhou,et al.  Controlled Remote Implementation of an Arbitrary Single-Qubit Operation with Partially Entangled Quantum Channel , 2017 .

[87]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[88]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[89]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[90]  Ping Zhou,et al.  Bidirectional Controlled Remote Implementation of an Arbitrary Single Qubit Unitary Operation with EPR and Cluster States , 2015 .

[91]  C. P. Sun,et al.  Quantum computation based on d-level cluster state (11 pages) , 2003, quant-ph/0304054.

[92]  Yu-Bo Sheng,et al.  Complete logic Bell-state analysis assisted with photonic Faraday rotation , 2015 .

[93]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[94]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[95]  London,et al.  Quantum Remote Control: Teleportation of Unitary Operations , 2000, quant-ph/0005061.

[96]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[97]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[98]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.