Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography

Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

[1]  Masaki Yamamoto,et al.  Micro-crystallography comes of age. , 2012, Current opinion in structural biology.

[2]  U Weierstall,et al.  X-ray lasers for structural and dynamic biology , 2012, Reports on progress in physics. Physical Society.

[3]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[5]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[6]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[7]  S. White The progress of membrane protein structure determination , 2004, Protein science : a publication of the Protein Society.

[8]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[9]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.

[10]  Weizhong Zeng,et al.  Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger , 2012, Science.

[11]  Garth J Simpson,et al.  Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. , 2010, Analytical chemistry.

[12]  Henry N. Chapman,et al.  Femtosecond X-ray protein nanocrystallography , 2010 .

[13]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[14]  S. Hatzikiriakos Wall slip of molten polymers , 2012 .

[15]  V. Cherezov,et al.  Rational design of lipid for membrane protein crystallization. , 2004, Journal of structural biology.

[16]  R. Stevens,et al.  Crystal Structure of a Voltage-gated K+ Channel Pore Module in a Closed State in Lipid Membranes* , 2012, The Journal of Biological Chemistry.

[17]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[19]  Joshua M. Kunken,et al.  Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. , 2012, Structure.

[20]  M. Scott,et al.  Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine , 2000, Nature.

[21]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[22]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[23]  Bryan L. Roth,et al.  Structure of the human smoothened receptor bound to an antitumour agent , 2013, Nature.

[24]  Elspeth F. Garman,et al.  Radiation damage in macromolecular crystallography: what is it and why should we care? , 2010, Acta crystallographica. Section D, Biological crystallography.

[25]  J. Spence,et al.  Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination. , 2011, Current opinion in structural biology.

[26]  Georg Weidenspointner,et al.  Lipidic phase membrane protein serial femtosecond crystallography , 2012, Nature Methods.

[27]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[28]  K. Schmidt,et al.  Gas dynamic virtual nozzle for generation of microscopic droplet streams , 2008, 0803.4181.

[29]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[30]  Jussi Taipale,et al.  Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. , 2002, Genes & development.

[31]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[32]  R. Stevens,et al.  Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam , 2009, Journal of The Royal Society Interface.

[33]  S. T. A. Shah,et al.  Crystal structure of the integral membrane diacylglycerol kinase , 2013, Nature.

[34]  Anton Barty,et al.  Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. , 2011, Optics express.

[35]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[36]  Sébastien Boutet,et al.  The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) , 2010 .

[37]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[38]  Anton Barty,et al.  Crystallographic data processing for free-electron laser sources , 2013, Acta crystallographica. Section D, Biological crystallography.

[39]  V. Cherezov Lipidic cubic phase technologies for membrane protein structural studies. , 2011, Current opinion in structural biology.

[40]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[41]  Chris de Graaf,et al.  Structure of the human glucagon class B G-protein-coupled receptor , 2013, Nature.