Regular 3D Gauss-Bonnet black holes with finite electrodynamics
暂无分享,去创建一个
[1] K. Jusufi. Regular black holes in three dimensions and the zero point length , 2022, 2209.04433.
[2]
J. Oliveira,et al.
Gauss-Bonnet black holes in (
[3] K. Saifullah,et al. $$(2+1)$$-dimensional black holes of Einstein’s theory with Born–Infeld type electrodynamic sources , 2022, The European Physical Journal C.
[4] Pedro G S Fernandes. Gravity with a generalized conformal scalar field: Theory and solutions , 2021, 2105.04687.
[5] E. Papantonopoulos,et al. Black holes of ( 2+1 )-dimensional f(R) gravity coupled to a scalar field , 2021, Physical Review D.
[6] A. Sheykhi. Mimetic gravity in (2 + 1)-dimensions , 2020, Journal of High Energy Physics.
[7] Robie A. Hennigar,et al. Rotating Gauss-Bonnet BTZ Black Holes , 2020, 2005.13732.
[8] P. Bargueño,et al. Anisotropic 2+1 dimensional black holes by gravitational decoupling , 2020, The European Physical Journal C.
[9] Robie A. Hennigar,et al. Lower-dimensional Gauss–Bonnet gravity and BTZ black holes , 2020, 2004.12995.
[10] Robie A. Hennigar,et al. On taking the D → 4 limit of Gauss-Bonnet gravity: theory and solutions , 2020, 2004.09472.
[11] T. Clifton,et al. Derivation of regularized field equations for the Einstein-Gauss-Bonnet theory in four dimensions , 2020, Physical Review D.
[12] Y. Pang,et al. Horndeski gravity as D → 4 limit of Gauss-Bonnet , 2020, 2003.11552.
[13] D. Grumiller,et al. Near horizon dynamics of three dimensional black holes , 2019, SciPost Physics.
[14] A. Sheykhi. Modified Friedmann equations from Tsallis entropy , 2018, Physics Letters B.
[15] M. Mohammadi,et al. Analytical and numerical study of backreacting one-dimensional holographic superconductors in the presence of Born–Infeld electrodynamics , 2018, The European Physical Journal C.
[16] M. K. Zangeneh,et al. One-dimensional backreacting holographic superconductors with exponential nonlinear electrodynamics , 2018, 1804.05442.
[17] Á. Rincón,et al. Greybody factors for a minimally coupled scalar field in a three-dimensional Einstein-power-Maxwell black hole background , 2018, 1804.04684.
[18] Á. Rincón,et al. Quasinormal modes of scale dependent black holes in ( 1+2 )-dimensional Einstein-power-Maxwell theory , 2018, 1801.03248.
[19] A. Chamseddine,et al. Nonsingular black hole , 2016, 1612.05861.
[20] Xiaobao Wang,et al. Construction of Regular Black Holes in General Relativity , 2016, 1610.02636.
[21] R. Mann,et al. Black hole chemistry: thermodynamics with Lambda , 2016, 1608.06147.
[22] Sushant G. Ghosh,et al. Radiating Kerr-like regular black hole , 2014, 1410.4043.
[23] S. H. Hendi,et al. Thermodynamic stability of BTZ dilaton black holes , 2014 .
[24] Wei Xu. Exact black hole formation in three dimensions , 2014, 1409.3368.
[25] A. Abdujabbarov,et al. Rotating Regular Black Hole Solution , 2014, 1404.6443.
[26] A. Sheykhi,et al. Horizon thermodynamics and gravitational field equations in quasi-topological gravity , 2014, 1404.0260.
[27] C. Bambi,et al. Rotating regular black holes , 2013, 1302.6075.
[28] Seyed Hossein Hendi,et al. Asymptotic charged BTZ black hole solutions , 2012, 1405.4941.
[29] Bin Wang,et al. Holographic superconductor developed in BTZ black hole background with backreactions , 2011, 1106.4353.
[30] Jie Ren. One-dimensional holographic superconductor from AdS3/CFT2 correspondence , 2010, 1008.3904.
[31] M. Farooq,et al. Phantom Wormholes in (2+1)-Dimensions , 2010, 1001.1243.
[32] T.Padmanabhan. Thermodynamical Aspects of Gravity: New insights , 2009, 0911.5004.
[33] S. Ross,et al. Strings in extremal BTZ black holes , 2009, 0901.3044.
[34] M. Setare,et al. Near-horizon limit of the charged BTZ black hole and AdS2 quantum gravity , 2008, 0806.2754.
[35] S. Solodukhin,et al. 01 12 05 5 v 2 1 5 Fe b 20 02 Conformal Field Theory Interpretation of Black Hole Quasi-normal Modes , 2008 .
[36] R. Cai,et al. Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworlds , 2007, hep-th/0701261.
[37] R. Cai,et al. Thermodynamical properties of apparent horizon in warped DGP braneworld , 2007, hep-th/0701198.
[38] R. Cai,et al. Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe , 2006, hep-th/0609128.
[39] T. Padmanabhan,et al. Thermodynamic route to field equations in Lanczos-Lovelock gravity , 2006, hep-th/0607240.
[40] B. N. Tiwari,et al. On the thermodynamic geometry of BTZ black holes , 2006, hep-th/0606084.
[41] M. Flohr,et al. Conformal Field Theory , 2006 .
[42] S. Hayward. FORMATION AND EVAPORATION OF REGULAR BLACK HOLES , 2005 .
[43] S. Carlip. Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole , 2005, gr-qc/0503022.
[44] R. Cai,et al. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe , 2005, hep-th/0501055.
[45] T.Padmanabhan. Gravity and the Thermodynamics of Horizons , 2003, gr-qc/0311036.
[46] A. Ashtekar,et al. Isolated Horizons in 2+1 Gravity , 2002, gr-qc/0206024.
[47] C. Teitelboim,et al. Charged Rotating Black Hole in Three Spacetime Dimensions , 1999, hep-th/9912259.
[48] R. Emparan,et al. Exact description of black holes on branes II: comparison with BTZ black holes and black strings , 1999, hep-th/9912135.
[49] E. Ay'on-Beato,et al. Regular black hole in general relativity coupled to nonlinear electrodynamics , 1998, gr-qc/9911046.
[50] S. Nojiri,et al. CAN QUANTUM-CORRECTED BTZ BLACK HOLE ANTI-EVAPORATE? , 1998, gr-qc/9806034.
[51] E. Witten. ANTI-DE SITTER SPACE, THERMAL PHASE TRANSITION AND CONFINEMENT IN GAUGE THEORIES , 1998, hep-th/9803131.
[52] F. Mansouri,et al. Rotating charged solutions to Einstein Maxwell Chern-Simons theory in (2+1)-dimensions , 1997, gr-qc/9705016.
[53] G. Clément. Spinning charged BTZ black holes and self-dual particle-like solutions , 1995, gr-qc/9510025.
[54] Jacobson,et al. Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.
[55] C. S.. The ( 2 + 1 )-Dimensional Black Hole , 1995 .
[56] Zanelli,et al. Geometry of the 2+1 black hole. , 1993, Physical review. D, Particles and fields.
[57] Zanelli,et al. Black hole in three-dimensional spacetime. , 1992, Physical review letters.