Regular 3D Gauss-Bonnet black holes with finite electrodynamics

We construct a new class of charged regular black hole solutions, using the zero-point length effect, in the framework of three dimensional Gauss-Bonnet (GB) gravity which belongs to a scalar-tensor formulation of gravity. The gravitational and electromagnetic potentials as well as the spacetime geometry are finite and regular everywhere. We also explore thermodynamics of the obtained solutions and reveal that the entropy of the black hole decreases due to the stringy effects. We compute thermodynamic and conserved quantities and verify the validity of the first law of thermodynamics on the black hole horizon. Finally, the rotating solution is shortly reported.

[1]  K. Jusufi Regular black holes in three dimensions and the zero point length , 2022, 2209.04433.

[2]  J. Oliveira,et al.  Gauss-Bonnet black holes in ( 2+1 ) dimensions: Perturbative aspects and entropy features , 2022, Physical Review D.

[3]  K. Saifullah,et al.  $$(2+1)$$-dimensional black holes of Einstein’s theory with Born–Infeld type electrodynamic sources , 2022, The European Physical Journal C.

[4]  Pedro G S Fernandes Gravity with a generalized conformal scalar field: Theory and solutions , 2021, 2105.04687.

[5]  E. Papantonopoulos,et al.  Black holes of ( 2+1 )-dimensional f(R) gravity coupled to a scalar field , 2021, Physical Review D.

[6]  A. Sheykhi Mimetic gravity in (2 + 1)-dimensions , 2020, Journal of High Energy Physics.

[7]  Robie A. Hennigar,et al.  Rotating Gauss-Bonnet BTZ Black Holes , 2020, 2005.13732.

[8]  P. Bargueño,et al.  Anisotropic 2+1 dimensional black holes by gravitational decoupling , 2020, The European Physical Journal C.

[9]  Robie A. Hennigar,et al.  Lower-dimensional Gauss–Bonnet gravity and BTZ black holes , 2020, 2004.12995.

[10]  Robie A. Hennigar,et al.  On taking the D → 4 limit of Gauss-Bonnet gravity: theory and solutions , 2020, 2004.09472.

[11]  T. Clifton,et al.  Derivation of regularized field equations for the Einstein-Gauss-Bonnet theory in four dimensions , 2020, Physical Review D.

[12]  Y. Pang,et al.  Horndeski gravity as D → 4 limit of Gauss-Bonnet , 2020, 2003.11552.

[13]  D. Grumiller,et al.  Near horizon dynamics of three dimensional black holes , 2019, SciPost Physics.

[14]  A. Sheykhi Modified Friedmann equations from Tsallis entropy , 2018, Physics Letters B.

[15]  M. Mohammadi,et al.  Analytical and numerical study of backreacting one-dimensional holographic superconductors in the presence of Born–Infeld electrodynamics , 2018, The European Physical Journal C.

[16]  M. K. Zangeneh,et al.  One-dimensional backreacting holographic superconductors with exponential nonlinear electrodynamics , 2018, 1804.05442.

[17]  Á. Rincón,et al.  Greybody factors for a minimally coupled scalar field in a three-dimensional Einstein-power-Maxwell black hole background , 2018, 1804.04684.

[18]  Á. Rincón,et al.  Quasinormal modes of scale dependent black holes in ( 1+2 )-dimensional Einstein-power-Maxwell theory , 2018, 1801.03248.

[19]  A. Chamseddine,et al.  Nonsingular black hole , 2016, 1612.05861.

[20]  Xiaobao Wang,et al.  Construction of Regular Black Holes in General Relativity , 2016, 1610.02636.

[21]  R. Mann,et al.  Black hole chemistry: thermodynamics with Lambda , 2016, 1608.06147.

[22]  Sushant G. Ghosh,et al.  Radiating Kerr-like regular black hole , 2014, 1410.4043.

[23]  S. H. Hendi,et al.  Thermodynamic stability of BTZ dilaton black holes , 2014 .

[24]  Wei Xu Exact black hole formation in three dimensions , 2014, 1409.3368.

[25]  A. Abdujabbarov,et al.  Rotating Regular Black Hole Solution , 2014, 1404.6443.

[26]  A. Sheykhi,et al.  Horizon thermodynamics and gravitational field equations in quasi-topological gravity , 2014, 1404.0260.

[27]  C. Bambi,et al.  Rotating regular black holes , 2013, 1302.6075.

[28]  Seyed Hossein Hendi,et al.  Asymptotic charged BTZ black hole solutions , 2012, 1405.4941.

[29]  Bin Wang,et al.  Holographic superconductor developed in BTZ black hole background with backreactions , 2011, 1106.4353.

[30]  Jie Ren One-dimensional holographic superconductor from AdS3/CFT2 correspondence , 2010, 1008.3904.

[31]  M. Farooq,et al.  Phantom Wormholes in (2+1)-Dimensions , 2010, 1001.1243.

[32]  T.Padmanabhan Thermodynamical Aspects of Gravity: New insights , 2009, 0911.5004.

[33]  S. Ross,et al.  Strings in extremal BTZ black holes , 2009, 0901.3044.

[34]  M. Setare,et al.  Near-horizon limit of the charged BTZ black hole and AdS2 quantum gravity , 2008, 0806.2754.

[35]  S. Solodukhin,et al.  01 12 05 5 v 2 1 5 Fe b 20 02 Conformal Field Theory Interpretation of Black Hole Quasi-normal Modes , 2008 .

[36]  R. Cai,et al.  Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworlds , 2007, hep-th/0701261.

[37]  R. Cai,et al.  Thermodynamical properties of apparent horizon in warped DGP braneworld , 2007, hep-th/0701198.

[38]  R. Cai,et al.  Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe , 2006, hep-th/0609128.

[39]  T. Padmanabhan,et al.  Thermodynamic route to field equations in Lanczos-Lovelock gravity , 2006, hep-th/0607240.

[40]  B. N. Tiwari,et al.  On the thermodynamic geometry of BTZ black holes , 2006, hep-th/0606084.

[41]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[42]  S. Hayward FORMATION AND EVAPORATION OF REGULAR BLACK HOLES , 2005 .

[43]  S. Carlip Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole , 2005, gr-qc/0503022.

[44]  R. Cai,et al.  First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe , 2005, hep-th/0501055.

[45]  T.Padmanabhan Gravity and the Thermodynamics of Horizons , 2003, gr-qc/0311036.

[46]  A. Ashtekar,et al.  Isolated Horizons in 2+1 Gravity , 2002, gr-qc/0206024.

[47]  C. Teitelboim,et al.  Charged Rotating Black Hole in Three Spacetime Dimensions , 1999, hep-th/9912259.

[48]  R. Emparan,et al.  Exact description of black holes on branes II: comparison with BTZ black holes and black strings , 1999, hep-th/9912135.

[49]  E. Ay'on-Beato,et al.  Regular black hole in general relativity coupled to nonlinear electrodynamics , 1998, gr-qc/9911046.

[50]  S. Nojiri,et al.  CAN QUANTUM-CORRECTED BTZ BLACK HOLE ANTI-EVAPORATE? , 1998, gr-qc/9806034.

[51]  E. Witten ANTI-DE SITTER SPACE, THERMAL PHASE TRANSITION AND CONFINEMENT IN GAUGE THEORIES , 1998, hep-th/9803131.

[52]  F. Mansouri,et al.  Rotating charged solutions to Einstein Maxwell Chern-Simons theory in (2+1)-dimensions , 1997, gr-qc/9705016.

[53]  G. Clément Spinning charged BTZ black holes and self-dual particle-like solutions , 1995, gr-qc/9510025.

[54]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[55]  C. S. The ( 2 + 1 )-Dimensional Black Hole , 1995 .

[56]  Zanelli,et al.  Geometry of the 2+1 black hole. , 1993, Physical review. D, Particles and fields.

[57]  Zanelli,et al.  Black hole in three-dimensional spacetime. , 1992, Physical review letters.