Adaptive automatic data analysis in full-field fringe-pattern-based optical metrology

Fringe pattern processing and analysis is an important task of full-field optical measurement techniques like interferometry, digital holography, structural illumination and moiré. In this contribution we present several adaptive automatic data analysis solutions based on the notion of Hilbert-Huang transform for measurand retrieval via fringe pattern phase and amplitude demodulation. The Hilbert-Huang transform consists of 2D empirical mode decomposition algorithm and Hilbert spiral transform analysis. Empirical mode decomposition adaptively dissects a meaningful number of same-scale subimages from the analyzed pattern - it is a data-driven method. Appropriately managing this set of unique subimages results in a very powerful fringe pre-filtering tool. Phase/amplitude demodulation is performed using Hilbert spiral transform aided by the local fringe orientation estimator. We describe several optical measurement techniques for technical and biological objects characterization basing on the especially tailored Hilbert-Huang algorithm modifications for fringe pattern denoising, detrending and amplitude/phase demodulation.

[1]  Nii O. Attoh-Okine,et al.  Bidimensional Empirical Mode Decomposition Using Various Interpolation Techniques , 2009, Adv. Data Sci. Adapt. Anal..

[2]  Krzysztof Patorski,et al.  Two-frame tilt-shift error estimation and phase demodulation algorithm. , 2015, Optics letters.

[3]  Guoying Feng,et al.  Spatial carrier phase-shifting algorithm based on principal component analysis method , 2012 .

[4]  M. Servin,et al.  Isotropic n-dimensional fringe pattern normalization , 2003 .

[5]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[6]  Alejandro Federico,et al.  Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. , 2009, Applied optics.

[7]  Jean Claude Nunes,et al.  Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..

[8]  Krzysztof Patorski,et al.  Fourier domain interpretation of real and pseudo-moiré phenomena. , 2011, Optics express.

[9]  Krzysztof Patorski,et al.  Active microelement testing by interferometry using time-average and quasi-stroboscopic techniques , 2003, SPIE Optical Metrology.

[10]  Krzysztof Patorski,et al.  Quantitative phase imaging by single-shot Hilbert-Huang phase microscopy. , 2016, Optics letters.

[11]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Maciej Trusiak,et al.  Space domain interpretation of incoherent moiré superimpositions using FABEMD , 2012, Other Conferences.

[13]  Krzysztof Patorski,et al.  Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform. , 2010, Applied optics.

[14]  Jesmin F. Khan,et al.  Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order-Statistics Filter Based Envelope Estimation , 2008, EURASIP J. Adv. Signal Process..

[15]  Barbara Putz,et al.  Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion , 2012, 2012 15th International Conference on Information Fusion.

[16]  Wolfgang Osten,et al.  Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns. , 2002, Applied optics.

[17]  Yi Zhou,et al.  A de-illumination scheme for face recognition based on fast decomposition and detail feature fusion. , 2013, Optics express.

[18]  Maciej Trusiak,et al.  Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis. , 2016, Optics express.

[19]  K. Larkin Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Krzysztof Patorski,et al.  Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing. , 2016, Optics Letters.

[21]  Xiang Zhou,et al.  Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns. , 2012, Optics express.

[22]  Bongtae Han,et al.  Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. , 2004, Optics letters.

[23]  Christophe Damerval,et al.  A fast algorithm for bidimensional EMD , 2005, IEEE Signal Processing Letters.

[24]  Lionel R. Watkins,et al.  Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms , 2012 .

[25]  Munther A Gdeisat,et al.  Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. , 2006, Applied optics.

[26]  K. Patorski,et al.  Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations. , 2011, Applied optics.

[27]  M. A. Oldfield,et al.  Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Malgorzata Kujawinska,et al.  Spatial-carrier phase-shifting technique of fringe pattern analysis , 1991, Other Conferences.

[29]  M. Trusiak,et al.  Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering. , 2015, Optics express.

[30]  Krzysztof Patorski,et al.  Separation of complex fringe patterns using two-dimensional continuous wavelet transform. , 2012, Applied optics.

[31]  Krzysztof Patorski,et al.  Circular-linear grating Talbot interferometry with moiré Fresnel imaging for beam collimation. , 2014, Optics letters.

[32]  J. Schwider,et al.  IV Advanced Evaluation Techniques in Interferometry , 1990 .

[33]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[34]  Qian Kemao,et al.  A generalized regularized phase tracker for demodulation of a single fringe pattern. , 2012, Optics express.

[35]  Krzysztof Patorski,et al.  Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing. , 2013, Optics express.

[36]  José A. Gómez-Pedrero,et al.  Algorithm for fringe pattern normalization , 2001 .

[37]  Krzysztof Patorski,et al.  Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform. , 2012, Optics express.

[38]  J A Quiroga,et al.  Adaptive monogenic filtering and normalization of ESPI fringe patterns. , 2005, Optics letters.

[39]  Jesmin F. Khan,et al.  A novel approach of fast and adaptive bidimensional empirical mode decomposition , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[40]  Joanna Schmit,et al.  N-point spatial phase-measurement techniques for non-destructive testing , 1996 .

[41]  J. Marroquín,et al.  Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. , 1997, Applied optics.

[42]  Qian Kemao,et al.  Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations , 2007 .

[43]  Tao Wang,et al.  Application of two-dimensional S-Transform in fringe pattern analysis , 2013 .

[44]  Alejandro Federico,et al.  Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition. , 2008, Applied optics.

[45]  Krzysztof Patorski,et al.  Processing and phase analysis of fringe patterns with contrast reversals. , 2013, Optics express.

[46]  Li Kai,et al.  Improved generalized regularized phase tracker for demodulation of a single fringe pattern. , 2013, Optics express.

[47]  Maciej Trusiak,et al.  Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing , 2014, Photonics Europe.

[48]  Wenjing Chen,et al.  Application of S-transform profilometry in eliminating nonlinearity in fringe pattern. , 2012, Applied optics.

[49]  Qian Kemao,et al.  Windowed Fourier transform for fringe pattern analysis. , 2004, Applied optics.

[50]  Yi Zhou,et al.  Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition. , 2011, Optics express.

[51]  Tao Yang,et al.  Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns. , 2012, Optics letters.

[52]  Huanfeng Ma,et al.  Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing , 2006 .

[53]  Zehra Saraç,et al.  Phase recovery from interference fringes by using S-transform , 2008 .

[54]  Zhaoyang Wang,et al.  Two-dimensional continuous wavelet transform algorithm for phase extraction of two-step arbitrarily phase-shifted interferograms , 2014 .

[55]  Noé Alcalá Ochoa,et al.  Normalization and noise-reduction algorithm for fringe patterns , 2007 .

[56]  Qian Kemao,et al.  Frequency guided methods for demodulation of a single fringe pattern. , 2009, Optics express.

[57]  Maciej Trusiak,et al.  Hilbert-Huang processing for single-exposure two-dimensional grating interferometry. , 2013, Optics express.

[58]  D. Malacara,et al.  Interferogram Analysis for Optical Testing , 2018 .

[59]  Krzysztof Patorski,et al.  Examination of singular scalar light fields using wavelet processing of fork fringes. , 2011, Applied optics.

[60]  Krzysztof Patorski,et al.  Diffraction grating three-beam interferometry without self-imaging regime contrast modulations. , 2015, Optics letters.

[61]  Maciej Trusiak,et al.  Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition , 2014 .

[62]  Qian Kemao,et al.  Windowed Fourier transform for fringe pattern analysis: theoretical analyses. , 2008, Applied optics.

[63]  M. Servin,et al.  Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms , 2001 .

[64]  J Antonio Quiroga,et al.  Two-step demodulation based on the Gram-Schmidt orthonormalization method. , 2012, Optics letters.

[65]  David R. Burton,et al.  Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform , 2006 .

[66]  Maciej Trusiak,et al.  Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing. , 2014, Optics express.

[67]  Sai Siva Gorthi,et al.  Fringe projection techniques: Whither we are? , 2010 .

[68]  Daniel Malacara Optical Shop Testing (Wiley Series in Pure and Applied Optics) , 2007 .

[69]  Krzysztof Patorski,et al.  Handbook of the moiré fringe technique , 1993 .