Zero-temperature Glauber dynamics on Z^d
暂无分享,去创建一个
[1] P. Ney,et al. Some Problems on Random Intervals and Annihilating Particles , 1974 .
[2] Problèmes de récurrence concernant des mouvements aléatoires de particules sur Z avec destruction , 1977 .
[3] D. Schwartz. On Hitting Probabilities for an Annihilating Particle Model , 1978 .
[4] P. Leath,et al. Bootstrap percolation on a Bethe lattice , 1979 .
[5] R. Arratia. Site Recurrence for Annihilating Random Walks on $Z_d$ , 1983 .
[6] Michael Aizenman,et al. Metastability effects in bootstrap percolation , 1988 .
[7] R. Schonmann. On the Behavior of Some Cellular Automata Related to Bootstrap Percolation , 1992 .
[8] Emilio N.M. Cirillo,et al. Finite Size Scaling in Three-Dimensional Bootstrap Percolation , 1998 .
[9] F. Martinelli. Lectures on Glauber dynamics for discrete spin models , 1999 .
[10] C. D. Howard,et al. Zero-temperature ising spin dynamics on the homogeneous tree of degree three , 2000, Journal of Applied Probability.
[11] D. L. Stein,et al. Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems , 2000 .
[12] Charles M. Newman,et al. Dynamics of Ising spin systems at zero temperature , 2000 .
[13] Clusters and recurrence in the two-dimensional zero-temperature stochastic ising model , 2001, math/0103050.
[14] F. Manzo,et al. The Threshold Regime of Finite Volume Bootstrap Percolation , 2001 .
[15] Elchanan Mossel,et al. Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[16] A. Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.
[17] C. Wu. Zero-Temperature Dynamics of Ising Models on the Triangular Lattice , 2002 .
[18] Approach to Fixation for Zero-Temperature Stochastic Ising Models on the Hexagonal Lattice , 2001, math/0111170.
[19] R. Schonmann,et al. Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature , 2002 .
[20] A. Sinclair,et al. Glauber Dynamics on Trees: Boundary Conditions and Mixing Time , 2003, math/0307336.
[21] C. D. Howard,et al. The Percolation Transition for the Zero-Temperature Stochastic Ising Model on the Hexagonal Lattice , 2003 .
[22] F. Martinelli,et al. Phase ordering after a deep quench: the stochastic Ising and hard core gas models on a tree , 2004, math/0412450.
[23] Béla Bollobás,et al. Bootstrap percolation on the hypercube , 2006 .
[24] Yuval Peres,et al. Bootstrap Percolation on Infinite Trees and Non-Amenable Groups , 2003, Combinatorics, Probability and Computing.
[25] József Balogh,et al. Bootstrap percolation on the random regular graph , 2007, Random Struct. Algorithms.
[26] Svante Janson,et al. On percolation in random graphs with given vertex degrees , 2008, 0804.1656.
[27] R. Schonmann,et al. Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions , 2008 .
[28] Béla Bollobás,et al. Majority Bootstrap Percolation on the Hypercube , 2007, Combinatorics, Probability and Computing.
[29] B. Bollob'as,et al. Bootstrap percolation in three dimensions , 2008, 0806.4485.
[30] M. Biskup,et al. Metastable Behavior for Bootstrap Percolation on Regular Trees , 2009, 0904.3965.