Nosé–Hoover nonequilibrium dynamics and statistical mechanics

At equilibrium Nosé's 1984 revolutionary thermostat idea linked Newton's mechanics with Gibbs' statistical mechanics. His work expanded the scope of isothermal and isobaric simulations. Nosé–Hoover dynamics has subsequently facilitated the simulation and detailed understanding of nonequilibrium problems. The fractal phase-space distributions, and their close link to the Lyapunov spectrum, provide a novel explanation of irreversibility and a rich field for exploration.

[1]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[2]  Kenichiro Aoki,et al.  Bulk properties of anharmonic chains in strong thermal gradients: Non-equilibrium φ4 theory , 1999, chao-dyn/9910015.

[3]  Winkler Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscillator. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[4]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[5]  C. Dellago,et al.  Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? , 2005, The journal of physical chemistry. B.

[6]  H. Posch,et al.  Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics. , 1987, Physical review letters.

[7]  Carl P. Dettmann,et al.  Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics , 1996, chao-dyn/9612018.

[8]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[9]  Kenichiro Aoki,et al.  Time-reversible deterministic thermostats , 2004 .

[10]  Wolfgang Bauer,et al.  Canonical ensembles from chaos , 1990 .

[11]  Kawai,et al.  Large-scale elastic-plastic indentation simulations via nonequilibrium molecular dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  William G. Hoover,et al.  Time Reversibility, Computer Simulation, And Chaos , 1999 .

[13]  A. Grosberg,et al.  Practical applicability of the Jarzynski relation in statistical mechanics: a pedagogical example. , 2005, The journal of physical chemistry. B.

[14]  W. G. Hoover Atomistic nonequilibrium computer simulations , 1982 .

[15]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[16]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[17]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[18]  S. Nosé An Improved Symplectic Integrator for Nosé-Poincaré Thermostat , 2001 .

[19]  William G. Hoover,et al.  Dense-fluid shear viscosity via nonequilibrium molecular dynamics , 1975 .

[20]  Hoover Reversible mechanics and time's arrow. , 1988, Physical review. A, General physics.

[21]  Wooten,et al.  Molecular dynamics of silicon indentation. , 1993, Physical review. B, Condensed matter.

[22]  Wm. G. Hoover Mécanique de Nonéquilibre à la Californienne , 1997 .

[23]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[24]  William G. Hoover,et al.  Diffusion in a periodic Lorentz gas , 1987 .

[25]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[26]  Vesely,et al.  Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. , 1986, Physical review. A, General physics.

[27]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[28]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[29]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[30]  Time reversibility in nonequilibrium thermomechanics , 1998 .

[31]  C. G. Hoover,et al.  The second law of thermodynamics and multifractal distribution functions: Bin counting, pair correlations, and the Kaplan–Yorke conjecture , 2007 .

[32]  Kenichiro Aoki,et al.  Remarks on non-Hamiltonian statistical mechanics: Lyapunov exponents and phase-space dimensionality loss , 2002 .

[33]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[34]  Hoover,et al.  Time-reversible equilibrium and nonequilibrium isothermal-isobaric simulations with centered-difference Stoermer algorithms. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[35]  William G. Hoover,et al.  Kinetic moments method for the canonical ensemble distribution , 1996 .

[36]  W. G. Hoover Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics , 1980 .

[37]  Hoover Generalization of Nosé's isothermal molecular dynamics: Non-Hamiltonian dynamics for the canonical ensemble. , 1989, Physical review. A, General physics.