Nosé–Hoover nonequilibrium dynamics and statistical mechanics
暂无分享,去创建一个
[1] W. G. Hoover. Computational Statistical Mechanics , 1991 .
[2] Kenichiro Aoki,et al. Bulk properties of anharmonic chains in strong thermal gradients: Non-equilibrium φ4 theory , 1999, chao-dyn/9910015.
[3] Winkler. Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscillator. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[4] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature , 1980 .
[5] C. Dellago,et al. Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? , 2005, The journal of physical chemistry. B.
[6] H. Posch,et al. Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics. , 1987, Physical review letters.
[7] Carl P. Dettmann,et al. Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics , 1996, chao-dyn/9612018.
[8] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[9] Kenichiro Aoki,et al. Time-reversible deterministic thermostats , 2004 .
[10] Wolfgang Bauer,et al. Canonical ensembles from chaos , 1990 .
[11] Kawai,et al. Large-scale elastic-plastic indentation simulations via nonequilibrium molecular dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[12] William G. Hoover,et al. Time Reversibility, Computer Simulation, And Chaos , 1999 .
[13] A. Grosberg,et al. Practical applicability of the Jarzynski relation in statistical mechanics: a pedagogical example. , 2005, The journal of physical chemistry. B.
[14] W. G. Hoover. Atomistic nonequilibrium computer simulations , 1982 .
[15] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble , 1984 .
[16] M. Klein,et al. Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .
[17] Stephen D. Bond,et al. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .
[18] S. Nosé. An Improved Symplectic Integrator for Nosé-Poincaré Thermostat , 2001 .
[19] William G. Hoover,et al. Dense-fluid shear viscosity via nonequilibrium molecular dynamics , 1975 .
[20] Hoover. Reversible mechanics and time's arrow. , 1988, Physical review. A, General physics.
[21] Wooten,et al. Molecular dynamics of silicon indentation. , 1993, Physical review. B, Condensed matter.
[22] Wm. G. Hoover. Mécanique de Nonéquilibre à la Californienne , 1997 .
[23] L. V. Woodcock. Isothermal molecular dynamics calculations for liquid salts , 1971 .
[24] William G. Hoover,et al. Diffusion in a periodic Lorentz gas , 1987 .
[25] W. G. Hoover. molecular dynamics , 1986, Catalysis from A to Z.
[26] Vesely,et al. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. , 1986, Physical review. A, General physics.
[27] C. Jarzynski. Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.
[28] Shuichi Nosé,et al. Constant Temperature Molecular Dynamics Methods , 1991 .
[29] William G. Hoover,et al. Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .
[30] Time reversibility in nonequilibrium thermomechanics , 1998 .
[31] C. G. Hoover,et al. The second law of thermodynamics and multifractal distribution functions: Bin counting, pair correlations, and the Kaplan–Yorke conjecture , 2007 .
[32] Kenichiro Aoki,et al. Remarks on non-Hamiltonian statistical mechanics: Lyapunov exponents and phase-space dimensionality loss , 2002 .
[33] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[34] Hoover,et al. Time-reversible equilibrium and nonequilibrium isothermal-isobaric simulations with centered-difference Stoermer algorithms. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[35] William G. Hoover,et al. Kinetic moments method for the canonical ensemble distribution , 1996 .
[36] W. G. Hoover. Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics , 1980 .
[37] Hoover. Generalization of Nosé's isothermal molecular dynamics: Non-Hamiltonian dynamics for the canonical ensemble. , 1989, Physical review. A, General physics.