Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition

This paper is devoted to presenting a method of proving verification theorems for stochastic optimal control of finite dimensional diffusion processes without control in the diffusion term. The value function is assumed to be continuous in time and once differentiable in the space variable (C0,1) instead of once differentiable in time and twice in space (C1,2), like in the classical results. The results are obtained using a time dependent Fukushima-Dirichlet decomposition proved in a companion paper by the same authors using stochastic calculus via regularization. Applications, examples and a comparison with other similar results are also given.

[1]  F. Flandoli,et al.  Some SDEs with distributional drift. , 2004 .

[2]  B. Maslowski,et al.  Ergodic Control of Semilinear Stochastic Equations and the Hamilton–Jacobi Equation☆☆☆ , 1999 .

[3]  Fausto Gozzi,et al.  Generation of analytic semigroups and domain characterization for degenerate elliptic operators with unbounded coefficients arising in financial mathematics. I , 2002, Differential and Integral Equations.

[4]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[5]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[6]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[7]  A. Rozkosz Backward SDEs and Cauchy problem for semilinear equations in divergence form , 2003 .

[8]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[9]  Michael G. Crandall,et al.  Lp- Theory for fully nonlinear uniformly parabolic equations , 2000 .

[10]  G. Tessitore,et al.  Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control , 2002 .

[11]  Bruno Viscolani,et al.  Advertising for a new product introduction: A stochastic approach , 2004 .

[12]  Xun Yu Zhou,et al.  On the existence of optimal relaxed controls of stochastic partial differential equations , 1992 .

[13]  Centro internazionale matematico estivo. Session,et al.  Stochastic PDE's and Kolmogorov equations in infinite dimensions : lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24- September 1, 1998 , 1999 .

[14]  Giuseppe Da Prato,et al.  Second-order Hamilton-Jacobi equations in infinite dimensions , 1991 .

[15]  D. Aronson,et al.  Bounds for the fundamental solution of a parabolic equation , 1967 .

[16]  F. Flandoli,et al.  SOME SDES WITH DISTRIBUTIONAL DRIFT PART I: GENERAL CALCULUS , 2003 .

[17]  Carlo Marinelli The stochastic goodwill problem , 2007, Eur. J. Oper. Res..

[18]  Luciano Tubaro,et al.  Fully nonlinear stochastic partial differential equations , 1996 .

[19]  Sandra Cerrai,et al.  Optimal Control Problems for Stochastic Reaction-Diffusion Systems with Non-Lipschitz Coefficients , 2000, SIAM J. Control. Optim..

[20]  Fausto Gozzi,et al.  Global Regular Solutions of Second Order Hamilton–Jacobi Equations in Hilbert Spaces with Locally Lipschitz Nonlinearities , 1996 .

[21]  Elisabeth Rouy,et al.  Regular Solutions of Second-Order Stationary Hamilton-Jacobi Equations , 1996 .

[22]  Backward Stochastic Differential Equations Associated to a Symmetric Markov Process , 2005 .

[23]  JB Clément,et al.  Weak Dirichlet processes with a stochastic control perspective , 2006, math/0604326.

[24]  Fausto Gozzi,et al.  Regularity of solutions of a second order hamilton-jacobi equation and application to a control problem , 1995 .

[25]  P. Souganidis,et al.  Fully nonlinear stochastic partial differential equations: non-smooth equations and applications , 1998 .

[26]  Shige Peng,et al.  Stochastic Hamilton-Jacobi-Bellman equations , 1992 .

[27]  A. Buttu On the evolution operator for a class of non-autonomous abstract parabolic equations , 1992 .

[28]  U. Gianazza,et al.  Generation of analytic semigroups by degenerate elliptic operators , 1997 .

[29]  A. Lejay A probabilistic representation of the solution of some quasi-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE , 2004 .

[30]  Daniel W. Stroock,et al.  Diffusion semigroups corresponding to uniformly elliptic divergence form operators , 1988 .

[31]  Giuseppe Da Prato,et al.  Control of the Stochastic Burgers Model of Turbulence , 1999 .

[32]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[33]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[34]  Jin Ma Forward-backward stochastic differential equations and their applications in finance , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[35]  Barbara Trivellato,et al.  Pathwise Optimality in Stochastic Control , 2000, SIAM J. Control. Optim..

[36]  Xun Yu Zhou,et al.  Stochastic Verification Theorems within the Framework of Viscosity Solutions , 1997 .