Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey

[1] Surficial materials, including soil and dust, are abundant in the upper tens of centimeters of the Martian surface sensed by the Mars Odyssey Gamma Ray Spectrometer (GRS). Seven large areas (14% of the Martian surface) that represent possible compositional end-members were selected, including three regions heavily mantled with surficial materials. The selection process included mapping the ratio of exposed rocky terrain to surficial materials using high-resolution imagery. GRS data for H, Cl, Fe, Si, K, and Th were obtained for each area. The areas are chemically homogeneous within each area, given the spatial resolution and analytical uncertainty of the GRS data. However, substantial chemical differences exist among the areas, including the different mantled terrains, contrary to earlier assumptions that surficial materials are globally homogeneous due to aeolian mixing. The observed chemical differences among the areas may be due to variations in the protolith compositions, extent of alteration of the protolith regions, or post soil formation processes. The abundances of Cl, K, and Th in rockier (but still soil-rich) areas such as Syrtis Major Planum can be explained by mixing between a soil with higher concentrations of Cl, K, and Th, similar to the abundances in the mantled terrains (and some of the landing sites), and crustal rocks containing lower abundances of these elements, similar to Martian meteorites.

[1]  Richard D. Starr,et al.  Variations in K/Th on Mars , 2007 .

[2]  Richard D. Starr,et al.  Bulk composition and early differentiation of Mars , 2007 .

[3]  G. J. Taylor,et al.  Composition of northern low-albedo regions of Mars : Insights from the Mars Odyssey Gamma Ray Spectrometer , 2007 .

[4]  Richard D. Starr,et al.  Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS , 2007 .

[5]  Richard D. Starr,et al.  Analysis of gamma ray spectra measured by Mars Odyssey , 2007 .

[6]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[7]  G. J. Taylor,et al.  Microscale Distribution and Behavior of Th and K in Late-Stage Melts and Shock Melts in Olivine-Phyric Shergottites: Implications for the Interpretation of Remote Sensing and In Situ Measurements of the Martian Surface , 2006 .

[8]  William H. Farrand,et al.  Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars , 2006 .

[9]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[10]  Nathalie A. Cabrol,et al.  Aqueous processes at Gusev crater inferred from physical properties of rocks and soils along the Spirit traverse , 2006 .

[11]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[12]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[13]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[14]  Robert L. Tokar,et al.  Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars , 2005 .

[15]  P. Mouginis-Mark,et al.  New observations of volcanic features on Mars from the THEMIS instrument , 2005 .

[16]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[17]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[18]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[19]  H. Newsom,et al.  Incipient hydrothermal alteration of basalts and the origin of martian soil , 2005 .

[20]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[21]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[22]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[23]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[24]  J F Bell,et al.  Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.

[25]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[26]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[27]  R J Sullivan,et al.  Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars , 2004, Science.

[28]  P. McGovern,et al.  Olympus Mons Aureole Deposits: New Evidence for a Flank Failure Origin , 2004 .

[29]  L. Crumpler,et al.  Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars , 2003 .

[30]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[31]  C. Herd The oxygen fugacity of olivine‐phyric martian basalts and the components within the mantle and crust of Mars , 2003 .

[32]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[33]  Rudolf Rieder,et al.  Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry , 2003 .

[34]  W. Kiefer Melting in the martian mantle: Shergottite formation and implications for present‐day mantle convection on Mars , 2003 .

[35]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[36]  H. Wiesmann,et al.  The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics , 2003 .

[37]  Robert Haining,et al.  Spatial Data Analysis: Theory and Practice , 2003 .

[38]  M. Zuber,et al.  Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness , 2003 .

[39]  J. Head,et al.  Syrtis Major and Isidis Basin contact: Morphological and topographic characteristics of Syrtis Major lava flows and material of the Vastitas Borealis Formation , 2003 .

[40]  P. Mouginis-Mark Prodigious ash deposits near the summit of Arsia Mons volcano, Mars , 2002 .

[41]  H. Frey,et al.  Medusae Fossae Formation: New perspectives from Mars Global Surveyor , 2002 .

[42]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[43]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[44]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[45]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[46]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[47]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[48]  Robert C. Anderson,et al.  Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars , 2001 .

[49]  C. Pieters,et al.  Type 2 Terrain: Compositional Constraints on the Martian Lowlands , 2001 .

[50]  S. McLennan Crustal heat production and the thermal evolution of Mars , 2001 .

[51]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[52]  K. Keil,et al.  Mixing relationships in the Martian regolith and the composition of globally homogeneous dust , 2000 .

[53]  S. McLennan chemical composition of martian soil and rocks: Complex mixing and sedimentary transport , 2000 .

[54]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[55]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[56]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[57]  H. Newsom,et al.  Mixed Hydrothermal Fluids and the Origin of the Martian Soil: A New Quantitative Model , 1999 .

[58]  Joy A. Crisp,et al.  Soil‐like deposits observed by Sojourner, the Pathfinder rover , 1999 .

[59]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[60]  Kenneth L. Tanaka,et al.  Geology of the Thaumasia region, Mars: plateau development, valley origins, and magmatic evolution , 1999 .

[61]  H. Newsom,et al.  Chemical components of the Martian soil: Melt degassing, hydrothermal alteration, and chondritic debris , 1997 .

[62]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[63]  L. Crumpler Geotraverse from Xanthe Terra to Chryse Planitia: Viking 1 Lander region, Mars , 1997 .

[64]  J. Aubele,et al.  Geology of central Chryse Planitia and the Viking 1 landing site : Implications for the Mars Pathfinder mission , 1997 .

[65]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[66]  Kenneth L. Tanaka,et al.  Geology and landscape evolution of the Hellas region of Mars , 1995 .

[67]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[68]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[69]  J. Plescia Geology of the Small Tharsis Volcanoes: Jovis Tholus, Ulysses Patera, BibIls Patera, Mars , 1994 .

[70]  B. Clark Geochemical components in Martian soil , 1993 .

[71]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[72]  David A. Crown,et al.  Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars , 1993 .

[73]  G. Flynn,et al.  An assessment of the meteoritic contribution to the Martian soil , 1990 .

[74]  H. Frey,et al.  A new survey of multiring impact basins on Mars , 1990 .

[75]  David A. Crown,et al.  Volcanic geology of Tyrrhena Patera, Mars , 1990 .

[76]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[77]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[78]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[79]  E. C. Morris,et al.  Aureole deposits of the Martian volcano Olympus Mons , 1982 .

[80]  Ronald Greeley,et al.  Volcanism on Mars , 1981 .

[81]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[82]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[83]  Kenneth L. Jones,et al.  The geology of the Viking Lander 1 site , 1977 .

[84]  E. C. Morris,et al.  The geology of the Viking lander 2 site , 1977 .

[85]  S. Harris The aureole of Olympus Mons, Mars , 1977 .

[86]  A. Fortes,et al.  Lunar and Planetary Science XXXVII ( 2006 ) 1293 . pdf , 2006 .

[87]  J. Grant,et al.  Field Studies of Crater Gradation in Gusev Crater and Meridiani Planum Using the Mars Exploration Rovers , 2005 .

[88]  H. Newsom,et al.  The Martian Soil as a Geochemical Sink for Hydrothermally Altered Crustal Rocks and Mobile Elements: Implications of Early MER Results , 2005 .

[89]  J. Head,et al.  The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data , 2004 .

[90]  R. Reedy,et al.  Elemental Composition Variations for Large Dusty and Rocky Regions on Mars Using Gamma-Ray Data from the Mars Odyssey Gamma-Ray Spectrometer , 2004 .

[91]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[92]  M. Mellon,et al.  On the Distribution and Implications of Mantled and Exhumed Terrains on Mars , 2002 .

[93]  D. Crown,et al.  Geologic map of part of the Tyrrhena Patera region of Mars (MTM Quadrangle-20252) , 1998 .

[94]  H. J. Moore,et al.  Atlas of volcanic landforms on Mars , 1994 .

[95]  Kenneth L. Tanaka,et al.  Geologic maps of the Olympus Mons region of Mars , 1994 .

[96]  K. Edgett,et al.  The Tharsis-Montes, Mars - Comparison of Volcanic and Modified Landforms , 1992 .

[97]  Kenneth L. Tanaka,et al.  Kasei Valles, Mars - Interpretation of canyon materials and flood sources , 1992 .

[98]  A. Banin,et al.  Surface chemistry and mineralogy , 1992 .

[99]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[100]  S. Taylor,et al.  The continental crust : its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks , 1985 .

[101]  S. Taylor The continental crust , 1985 .

[102]  P. Batista,et al.  The diurnal variation of atmospheric sodium , 1982 .

[103]  R. Greeley,et al.  Surface properties of ancient cratered terrain in the northern hemisphere of Mars , 1982 .

[104]  G. Schaber,et al.  Syrtis major: A low‐relief volcanic shield , 1982 .

[105]  G. Neukum,et al.  Further evidence for a mass movement origin of the Olympus Mons aureole , 1982 .

[106]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .