Black-and-White Threshold Graphs

Let k be a natural number. We introduce k-threshold graphs. We show that there exists an O(n3) algorithm for the recognition of k-threshold graphs for each natural number k. k-Threshold graphs are characterized by a finite collection of forbidden induced subgraphs. For the case k = 2 we characterize the partitioned 2-threshold graphs by forbidden induced subgraphs. We introduce restricted, and special 2-threshold graphs. We characterize both classes by forbidden induced subgraphs. The restricted 2-threshold graphs coincide with the switching class of threshold graphs. This provides a decomposition theorem for the switching class of threshold graphs.

[1]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[2]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[3]  Maurice Pouzet,et al.  APPLICATIONS OF WELL QUASI-ORDERING AND BETTER QUASI-ORDERING , 1985 .

[4]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[5]  Peter J. Cameron Two-graphs and trees , 1994, Discret. Math..

[6]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[7]  Van Bang Le,et al.  Probe threshold and probe trivially perfect graphs , 2009, Theor. Comput. Sci..

[8]  Bruno Courcelle,et al.  Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.

[9]  P. Seymour,et al.  Graphs of bounded rank-width , 2005 .

[10]  Frank Harary,et al.  The structure of threshold graphs , 1979 .

[11]  Paolo Manca,et al.  On a simple characterisation of threshold graphs , 1979 .

[12]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[13]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[14]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[15]  Z. Tuza,et al.  Dominating cliques in P5-free graphs , 1990 .

[16]  Ton Kloks,et al.  On Some Simple Widths , 2010, WALCOM.

[17]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[18]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[19]  J. J. Seidel,et al.  Geometry and Combinatorics: Selected Works of J.J. Seidel , 1991 .

[20]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[21]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[22]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[23]  J. Orlin The Minimal Integral Separator of A Threshold Graph , 1977 .

[24]  J. J. Seidel,et al.  Equilateral point sets in elliptic geometry , 1966 .

[25]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[26]  Petr Hliněný,et al.  Finding branch-decomposition and rank-decomposition , 2008 .

[27]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..