Evaluation of a pattern matching method for the Tennessee Eastman challenge process

Abstract In this paper, we evaluate multivariate pattern matching methods for the Tennessee Eastman (TE) challenge process. The pattern matching methodology includes principal component analysis based similarity factors and dissimilarity factor of Kano et al., that compare current and historical data. In our similarity factor approach, the start and end times of disturbances are not known a priori and the data are compared by moving a window though the historical data. Comparisons with methods used in earlier case studies of the TE challenge process show advantages of using the proposed similarity factor approach.

[1]  Michael S. Dudzic,et al.  An industrial perspective on implementing on-line applications of multivariate statistics , 2004 .

[2]  Manabu Kano,et al.  Comparison of statistical process monitoring methods: application to the Eastman challenge problem , 2000 .

[3]  Janos Gertler,et al.  Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis , 2000 .

[4]  Richard D. Braatz,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[5]  P. A. Taylor,et al.  Off-line diagnosis of deterministic faults in continuous dynamic multivariable processes using speech recognition methods , 1998 .

[6]  N. L. Ricker,et al.  Multi-objective control of the Tennessee Eastman challenge process , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[7]  Randy J. Pell,et al.  Genetic algorithms combined with discriminant analysis for key variable identification , 2004 .

[8]  D. Seborg,et al.  Pattern Matching in Historical Data , 2002 .

[9]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[10]  Leo H. Chiang,et al.  Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis , 2000 .

[11]  Nina F. Thornhill,et al.  The impact of compression on data-driven process analyses , 2004 .

[12]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[13]  Dale E. Seborg,et al.  Identification of the Tennessee Eastman Challenge Process with Subspace Methods , 2000 .

[14]  Manabu Kano,et al.  Dissimilarity of Process Data for Statistical Process Monitoring , 2000 .

[15]  Ali Cinar,et al.  Multivariate statistical methods for monitoring continuous processes: assessment of discrimination power of disturbance models and diagnosis of multiple disturbances , 1995 .

[16]  N. Lawrence Ricker,et al.  Decentralized control of the Tennessee Eastman Challenge Process , 1996 .

[17]  A. Singhal,et al.  Pattern matching in historical batch data using PCA , 2002 .

[18]  Dale E. Seborg,et al.  Model predictive controller monitoring based on pattern classification and PCA , 2003, Proceedings of the 2003 American Control Conference, 2003..

[19]  Dale E. Seborg,et al.  Pattern Matching in Multivariate Time Series Databases Using a Moving-Window Approach , 2002 .

[20]  Manabu Kano,et al.  A new multivariate statistical process monitoring method using principal component analysis , 2001 .

[21]  Dale E. Seborg,et al.  Monitoring Model Predictive Control Systems Using Pattern Classification and Neural Networks , 2003 .

[22]  Theodora Kourti,et al.  Application of latent variable methods to process control and multivariate statistical process control in industry , 2005 .

[23]  T. J. McAvov,et al.  BASE CONTROL FOR THE TENNESSEE EASTMAN PROBLEM , 2001 .

[24]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[25]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[26]  Ali Cinar,et al.  Statistical Process Monitoring and Disturbance Isolation in Multivariate Continuous Processes , 1994 .

[27]  S. Qin,et al.  Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods† , 1999 .

[28]  En Sup Yoon,et al.  Fault Diagnosis Based on Weighted Symptom Tree and Pattern Matching , 1997 .

[29]  Theodora Kourti,et al.  Multivariate SPC Methods for Process and Product Monitoring , 1996 .

[30]  W. Krzanowski Between-Groups Comparison of Principal Components , 1979 .

[31]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[32]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[33]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[34]  Zhenhua Tian,et al.  Multiple Model-Based Control of the Tennessee−Eastman Process , 2005 .

[35]  Dale E. Seborg,et al.  Effect of Data Compression on Pattern Matching in Historical Data , 2005 .

[36]  Richard D. Braatz,et al.  Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis , 2000 .

[37]  Ali Cinar,et al.  Diagnosis of process disturbances by statistical distance and angle measures , 1997 .

[38]  Weihua Li,et al.  Isolation enhanced principal component analysis , 1999 .

[39]  G. McCabe Computations for Variable Selection in Discriminant Analysis , 1975 .