High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays

Vertically oriented TiO2 nanotube arrays formed by anodization offer a highly ordered material architecture for efficient charge generation and collection in photoelectrochemical devices. A blend of regioregular poly(3-hexylthiophene) and a methanofullerene (phenyl C71-butyric acid methyl ester) was infiltrated into transparent TiO2 nanotube films. The heterojunction poly(3-hexylthiophene) (P3HT)-([6,6]-phenyl-C71-butyric acid methyl ester) and P3HT-TiO2 interfaces both result in charge separation. The resulting solid state solar cells show a short-circuit current density of 12.4mA∕cm2, 641mV open circuit potential, and a 0.51 fill factor, yielding power conversion efficiencies of 4.1% under AM 1.5 sun.

[1]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[2]  Kazuhito Hashimoto,et al.  Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices , 2007 .

[3]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[4]  Craig A. Grimes,et al.  Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption , 2007 .

[5]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[6]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[7]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[8]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[9]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[10]  Jonathan M. Ziebarth,et al.  Enhanced Hole Mobility in Regioregular Polythiophene Infiltrated in Straight Nanopores , 2005 .

[11]  S. Tolbert,et al.  Controlling optical properties and interchain interactions in semiconducting polymers by encapsulation in periodic nanoporous silicas with different pore sizes. , 2005, The journal of physical chemistry. B.

[12]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[13]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[14]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[15]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[16]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[17]  M. Leclerc,et al.  Rod-to-coil transition in alkoxy-substituted polythiophenes , 1992 .