Wheel slip control using gain-scheduled LQ — LPV/LMI analysis and experimental results

A wheel slip controller for Anti-lock Brake Systems (ABS) is designed using LQ-optimal control. The controller gain matrices are gain scheduled on the vehicle speed. A parameter dependent Lyapunov function for the nominal linear parameter varying (LPV) closed loop system is found by solving a linear matrix inequality (LMI) problem. This Lyapunov function is used to investigate robustness with respect to uncertainty in the road/tyre friction characteristic. Experimental results from a test vehicle with electromechanical brake actuators and brake-by-wire show that high performance and robustness are achieved.

[1]  Isaac Kaminer,et al.  A velocity algorithm for the implementation of gain-scheduled controllers , 1995, Autom..

[2]  Tor Arne Johansen,et al.  Off-equilibrium linearisation and design of gain-scheduled control with application to vehicle speed control , 1998 .

[3]  Tor Arne Johansen,et al.  Improved transient performance of nonlinear adaptive backstepping using estimator resetting based on multiple models , 2002, IEEE Trans. Autom. Control..

[4]  Carlos Canudas de Wit,et al.  Model-based observers for tire/road contact friction prediction , 1999 .

[5]  L. Alvarez,et al.  Adaptive emergency braking control using a dynamic tire/road friction model , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[6]  Stephen P. Boyd,et al.  Control System Analysis and Synthesis via Linear Matrix Inequalities , 1993, 1993 American Control Conference.

[7]  Jens Lüdemann Heterogeneous and hybrid control with application in automotive systems , 2002 .

[8]  Sergey V. Drakunov,et al.  ABS control using optimum search via sliding modes , 1995, IEEE Trans. Control. Syst. Technol..

[9]  M. Schinkel,et al.  A new approach to simultaneous stabilisation with D stability and its application to control of antilock braking systems , 2001, 2001 European Control Conference (ECC).

[10]  Ralf Schwarz,et al.  Rekonstruktion der Bremskraft bei Fahrzeugen mit elektromechanisch betätigten Radbremsen , 1999 .

[11]  Anders Rantzer,et al.  ABS control - A design model and control structure , 2003 .

[12]  P. E. Wellstead,et al.  Analysis and redesign of an antilock brake system controller , 1997 .

[13]  Tor Arne Johansen,et al.  Nonlinear Adaptive Backstepping with Estimator Resetting Using Multiple Observers , 2001, HSCC.

[14]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[15]  Bernd Hedenetz,et al.  BRAKE-BY-WIRE WITHOUT MECHANICAL BACKUP BY USING A TTP-COMMUNICATION NETWORK , 1998 .

[16]  J. S. Yu A robust adaptive wheel-slip controller for antilock brake system , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[17]  Anders Rantzer,et al.  Synthesis of a Model-Based Tire Slip Controller , 2002 .

[18]  Tor Arne Johansen,et al.  Gain-scheduled wheel slip control in automotive brake systems , 2003, IEEE Trans. Control. Syst. Technol..

[19]  Tor Arne Johansen,et al.  Explicit sub-optimal linear quadratic regulation with state and input constraints , 2002, Autom..

[20]  Jens Kalkkuhl,et al.  Wheel slip control in ABS brakes using gain scheduled constrained LQR , 2001, 2001 European Control Conference (ECC).