Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts

[1]  Mary A Raven,et al.  Cellular positioning and dendritic field size of cholinergic amacrine cells are impervious to early ablation of neighboring cells in the mouse retina , 2004, Visual Neuroscience.

[2]  Martin Raff,et al.  Importance of Intrinsic Mechanisms in Cell Fate Decisions in the Developing Rat Retina , 2003, Neuron.

[3]  Lily Yeh Jan,et al.  The Control of Dendrite Development , 2003, Neuron.

[4]  Y. Jan,et al.  Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion , 2003, Current Biology.

[5]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[6]  S. Wu,et al.  Effects of β-adrenergic blockers on glutamate-induced calcium signals in adult mouse retinal ganglion cells , 2003, Brain Research.

[7]  M. A. Raven,et al.  Horizontal cell density and mosaic regularity in pigmented and albino mouse retina , 2002, The Journal of comparative neurology.

[8]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[9]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[10]  Yuh Nung Jan,et al.  Tiling of the Drosophila epidermis by multidendritic sensory neurons. , 2002, Development.

[11]  Richard H. Masland,et al.  The Diversity of Ganglion Cells in a Mammalian Retina , 2002, The Journal of Neuroscience.

[12]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[13]  B. O'Brien,et al.  Intrinsic physiological properties of cat retinal ganglion cells , 2002, The Journal of physiology.

[14]  M. Rollag,et al.  Anatomy: Photoreceptive net in the mammalian retina , 2002, Nature.

[15]  M. Crair,et al.  Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. , 2002, Development.

[16]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[17]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[18]  R. Wong,et al.  Cell-type specific dendritic contacts between retinal ganglion cells during development. , 2001, Journal of neurobiology.

[19]  T. Glaser,et al.  Math5 is required for retinal ganglion cell and optic nerve formation. , 2001, Development.

[20]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[21]  R. Johnson,et al.  Requirement for math5 in the development of retinal ganglion cells. , 2001, Genes & development.

[22]  S. Solomon,et al.  Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. , 2000, The European journal of neuroscience.

[23]  D. O'Leary,et al.  A POU Domain Transcription Factor–Dependent Program Regulates Axon Pathfinding in the Vertebrate Visual System , 2000, Neuron.

[24]  E. Strettoi,et al.  The spatial organization of cholinergic mosaics in the adult mouse retina , 2000, The European journal of neuroscience.

[25]  W. Klein,et al.  Abnormal Polarization and Axon Outgrowth in Retinal Ganglion Cells Lacking the POU-Domain Transcription Factor Brn-3b , 2000, Molecular and Cellular Neuroscience.

[26]  J. Lichtman,et al.  Multicolor “DiOlistic” Labeling of the Nervous System Using Lipophilic Dye Combinations , 2000, Neuron.

[27]  R H Masland,et al.  Spatial order within but not between types of retinal neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R H Masland,et al.  Confronting complexity: strategies for understanding the microcircuitry of the retina. , 2000, Annual review of neuroscience.

[29]  W. Klein,et al.  POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. , 1999, Developmental biology.

[30]  G. H. Jacobs,et al.  Modelling the mosaic organization of rod and cone photoreceptors with a minimal‐spacing rule , 1999, The European journal of neuroscience.

[31]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[32]  Michael G. Rosenfeld,et al.  Role of transcription factors a Brn-3.1 and Brn-3.2 in auditory and visual system development , 1996, Nature.

[33]  J. Nathans,et al.  POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[34]  F. Amthor,et al.  Spatial organization of retinal information about the direction of image motion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. Dacey,et al.  Recoverin immunoreactivity in mammalian cone bipolar cells , 1993, Visual Neuroscience.

[38]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[39]  R. W. Rodieck The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies , 1991, Visual Neuroscience.

[40]  Peter W. J. Rigby,et al.  A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo , 1990, Nature.

[41]  P. Hitchcock Exclusionary dendritic interactions in the retina of the goldfish. , 1989, Development.

[42]  B. Boycott,et al.  Alpha ganglion cells in mammalian retinae , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  L. Chalupa,et al.  Retinal crowding alters the morphology of alpha ganglion cells , 1986, The Journal of comparative neurology.

[44]  D. I. Vaney Morphological identification of serotonin-accumulating neurons in the living retina. , 1986, Science.

[45]  L. Peichl,et al.  Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period , 1985, The Journal of comparative neurology.

[46]  R. Masland,et al.  Local order among the dendrites of an amacrine cell population , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  R H Masland,et al.  The shape and arrangement of the cholinergic neurons in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  B. Boycott,et al.  A spatial analysis of on- and off-ganglion cells in the cat retina , 1983, Vision Research.

[49]  B. Boycott,et al.  Mosaics and territories of cat retinal ganglion cells. , 1983, Progress in brain research.

[50]  R. Linden,et al.  Evidence for dendritic competition in the developing retina , 1982, Nature.

[51]  I. Parnas,et al.  Expanded receptive fields of cutaneous mechanoreceptor cells after single neurone deletion in leech central nervous system. , 1982, The Journal of physiology.

[52]  B. Boycott,et al.  Dendritic territories of cat retinal ganglion cells , 1981, Nature.

[53]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[55]  J. Mills,et al.  Acetylcholine synthesis by displaced amacrine cells. , 1980, Science.

[56]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[57]  D. Baylor,et al.  Specific modalities and receptive fields of sensory neurons in CNS of the leech. , 1968, Journal of neurophysiology.