Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review

[1]  M. Mehrali,et al.  Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid , 2017 .

[2]  P. Shukla,et al.  Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating , 2017, Resource-Efficient Technologies.

[3]  F. Al-Sulaiman,et al.  A review for phase change materials (PCMs) in solar absorption refrigeration systems , 2017 .

[4]  Xin Min,et al.  Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials , 2017 .

[5]  Boyi Wang,et al.  Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials , 2017 .

[6]  Wei Yang,et al.  Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets , 2017 .

[7]  Shufen Zhang,et al.  Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping , 2017 .

[8]  A. Sari,et al.  Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes , 2017 .

[9]  Shufen Zhang,et al.  Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage , 2017 .

[10]  S. S. Chandel,et al.  Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials , 2017 .

[11]  Wei Yang,et al.  An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion , 2016 .

[12]  N. Koratkar,et al.  Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability , 2016 .

[13]  S. M. Sadrameli,et al.  Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates , 2016 .

[14]  J. Fang,et al.  From anisotropic graphene aerogels to electron- and photo-driven phase change composites , 2016 .

[15]  Shuangfeng Wang,et al.  Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network , 2016 .

[16]  Renyuan Li,et al.  Solar-thermal conversion and thermal energy storage of graphene foam-based composites. , 2016, Nanoscale.

[17]  K. Rhee,et al.  Effects of exfoliated graphite on the thermal properties of erythritol-based composites used as phase-change materials , 2016 .

[18]  Wei Yang,et al.  Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage , 2016 .

[19]  Ping Zhang,et al.  Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets , 2016 .

[20]  M. S. Naghavi,et al.  From rice husk to high performance shape stabilized phase change materials for thermal energy storage , 2016 .

[21]  M. Rosen,et al.  Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance , 2016 .

[22]  Haifeng Shi,et al.  Effect of graphene oxide nanoplatelets on the thermal characteristics and shape-stabilized performance of poly(styrene-co-maleic anhydride)-g-octadecanol comb-like polymeric phase change materials , 2016 .

[23]  Jinghui Fan,et al.  Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials , 2016 .

[24]  Wei Yang,et al.  Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage , 2016 .

[25]  Zuowan Zhou,et al.  Largely Enhanced Thermal Conductivity and High Dielectric Constant of Poly(vinylidene fluoride)/Boron Nitride Composites Achieved by Adding a Few Carbon Nanotubes , 2016 .

[26]  Zhongzhen Yu,et al.  Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage , 2016 .

[27]  M. Rosen,et al.  Experimental investigation of thermophysical properties, entropy generation and convective heat transfer for a nitrogen-doped graphene nanofluid in a laminar flow regime , 2016 .

[28]  Yanping Yuan,et al.  Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study , 2016 .

[29]  B. Jebasingh Exfoliation of graphite by solar irradiation and investigate their thermal property on capric–myristic–palmitic acid/exfoliated graphite composite as phase change material (PCM) for energy storage , 2016 .

[30]  K. Pielichowska,et al.  The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene , 2016 .

[31]  Weiwen Xu,et al.  Study on phase change interface for erythritol with nano-copper in spherical container during heat transport , 2016 .

[32]  Yafei Zhang,et al.  Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage , 2015 .

[33]  Jianyin Wang,et al.  Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion , 2015 .

[34]  R. Ruoff,et al.  Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. , 2015, ACS nano.

[35]  Javier Rodríguez-Aseguinolaza,et al.  Preparation of erythritol–graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications , 2015 .

[36]  O. Regev,et al.  Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices. , 2015, ACS applied materials & interfaces.

[37]  T. Mahlia,et al.  One-Step Preparation of Form-Stable Phase Change Material through Self-Assembly of Fatty Acid and Graphene , 2015 .

[38]  Zhengguo Zhang,et al.  Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model , 2015 .

[39]  D. Brüggemann,et al.  Galactitol as phase change material for latent heat storage of solar cookers: Investigating thermal behavior in bulk cycling , 2015 .

[40]  Zhengguo Zhang,et al.  RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability , 2015 .

[41]  P. Sobolčiak,et al.  The stabilizing effect of expanded graphite on the artificial aging of shape stabilized phase change materials , 2015 .

[42]  Liyi Shi,et al.  Thermal Conductive and Mechanical Properties of Polymeric Composites Based on Solution-Exfoliated Boron Nitride and Graphene Nanosheets: A Morphology-Promoted Synergistic Effect. , 2015, ACS applied materials & interfaces.

[43]  Q. Wei,et al.  Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval , 2015 .

[44]  T. Mahlia,et al.  Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets , 2015 .

[45]  Wei Yang,et al.  Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage , 2015 .

[46]  Benxia Li,et al.  Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage , 2015 .

[47]  Zhongpin Zhang,et al.  Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices. , 2015, Nanoscale.

[48]  T. Mahlia,et al.  Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method , 2015 .

[49]  R. K. Sharma,et al.  Developments in organic solid–liquid phase change materials and their applications in thermal energy storage , 2015 .

[50]  Dang Wu,et al.  Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials , 2015 .

[51]  S. Harish,et al.  Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets , 2015 .

[52]  Soteris A. Kalogirou,et al.  Phase change materials (PCMs) integrated into transparent building elements: a review , 2015, Materials for Renewable and Sustainable Energy.

[53]  Yi-min Li,et al.  Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement , 2015 .

[54]  Jang‐Kyo Kim,et al.  Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. , 2015, ACS applied materials & interfaces.

[55]  T. Mahlia,et al.  Fabrication and performances of microencapsulated palmitic acid with enhanced thermal properties , 2015 .

[56]  Ray P. S. Han,et al.  Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels , 2015 .

[57]  Mustapha Karkri,et al.  Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends , 2015 .

[58]  Baoliang Chen,et al.  Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. , 2015, Environmental science & technology.

[59]  Teuku Meurah Indra Mahlia,et al.  Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage , 2014 .

[60]  Yanping Yuan,et al.  Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage , 2014 .

[61]  G. Fang,et al.  Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials , 2014 .

[62]  T. Mahlia,et al.  Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage , 2014 .

[63]  Wei Xia,et al.  Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage , 2014 .

[64]  Lijie Dong,et al.  Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage , 2014 .

[65]  Wei Li,et al.  Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide , 2014 .

[66]  Zhang Qian,et al.  Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites , 2014 .

[67]  Saeed Kamali,et al.  Review of free cooling system using phase change material for building , 2014 .

[68]  Gengchao Wang,et al.  Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes , 2014 .

[69]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[70]  Emad Sadeghinezhad,et al.  Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids , 2014, Journal of Materials Science.

[71]  Zhishen Wu,et al.  Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material , 2014 .

[72]  T. Mahlia,et al.  Facile Preparation of Carbon Microcapsules Containing Phase-Change Material with Enhanced Thermal Properties , 2014, TheScientificWorldJournal.

[73]  M. Tsai,et al.  Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. , 2014, ACS applied materials & interfaces.

[74]  K. Liao,et al.  From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials , 2014 .

[75]  Hongzhou Zhu,et al.  Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods , 2014 .

[76]  W. Rymowicz,et al.  High selectivity of erythritol production from glycerol by Yarrowia lipolytica , 2014 .

[77]  Wei Yang,et al.  Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide , 2014 .

[78]  Shufen Zhang,et al.  A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage , 2014 .

[79]  Suvhashis Thapa,et al.  Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement , 2014 .

[80]  S. M. Sadrameli,et al.  A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium , 2014 .

[81]  Lixian Sun,et al.  Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials , 2014 .

[82]  Fariborz Haghighat,et al.  Thermal energy storage with phase change material—A state-of-the art review , 2014 .

[83]  Shuangfeng Wang,et al.  A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications , 2014 .

[84]  Bingtao Tang,et al.  Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light , 2014 .

[85]  W. Tao,et al.  Fatty acids as phase change materials: A review , 2014 .

[86]  W. Rymowicz,et al.  Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures , 2013, Journal of Industrial Microbiology & Biotechnology.

[87]  M. S. Naghavi,et al.  Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material , 2013 .

[88]  Teuku Meurah Indra Mahlia,et al.  Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method , 2013 .

[89]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[90]  N. Jeong,et al.  Preparation of highly pure and crystalline carbon nanotubes and their infiltration by paraffin wax , 2013 .

[91]  Hongzhou Zhu,et al.  Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage , 2013 .

[92]  Zhongpin Zhang,et al.  Increasing Phase Change Latent Heat of Stearic Acid via Nanocapsule Interface Confinement , 2013 .

[93]  K. Cen,et al.  Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials , 2013 .

[94]  X. Xiao,et al.  Morphologies and thermal characterization of paraffin/carbon foam composite phase change material , 2013 .

[95]  Shufen Zhang,et al.  Single‐Walled Carbon Nanotube/Phase Change Material Composites: Sunlight‐Driven, Reversible, Form‐Stable Phase Transitions for Solar Thermal Energy Storage , 2013 .

[96]  Hanxue Sun,et al.  Conjugated microporous polymers/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage , 2013 .

[97]  T. Mahlia,et al.  Preparation and properties of highly conductive palmitic acid/ graphene oxide composites as thermal energy storage materials , 2013 .

[98]  A. Karaipekli,et al.  Polyethyl Methacrylate (PEMA)/Fatty Acids Blends as Novel Phase Change Materials for Thermal Energy Storage , 2013 .

[99]  Mahmoud Moeini Sedeh,et al.  Thermal conductivity improvement of phase change materials/graphite foam composites , 2013 .

[100]  Haifeng Shi,et al.  Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage , 2013 .

[101]  Yajuan Zhong,et al.  Effect of graphene aerogel on thermal behavior of phase change materials for thermal management , 2013 .

[102]  Zhishen Wu,et al.  Heat storage properties of the cement mortar incorporated with composite phase change material , 2013 .

[103]  R. Frost,et al.  Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials , 2013 .

[104]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[105]  Shi-bin Nie,et al.  Facile preparation and adjustable thermal property of stearic acid–graphene oxide composite as shape-stabilized phase change material , 2013 .

[106]  N. Pu,et al.  Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives , 2013 .

[107]  C. Martínez,et al.  Development of PCM/carbon-based composite materials , 2012 .

[108]  Stefan Hiebler,et al.  Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials , 2012 .

[109]  Jinlong Zhu,et al.  Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. , 2012, ACS nano.

[110]  B. Su,et al.  Hierarchically Structured Porous Materials for Energy Conversion and Storage , 2012 .

[111]  S. Kim,et al.  Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers , 2012 .

[112]  Jianmin Qu,et al.  Size dependent thermal conductivity of single-walled carbon nanotubes , 2012 .

[113]  Lei Cao,et al.  Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage , 2012 .

[114]  A. Fleischer,et al.  The shape stabilization of paraffin phase change material to reduce graphite nanofiber settling during the phase change process , 2012 .

[115]  Murat Kenisarin,et al.  Form-stable phase change materials for thermal energy storage , 2012 .

[116]  Ni Zhang,et al.  Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material , 2012 .

[117]  Sarit K. Das,et al.  The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification , 2012 .

[118]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[119]  Huaqing Xie,et al.  Investigation on thermal properties of heat storage composites containing carbon fibers , 2011 .

[120]  Bing Zhang,et al.  Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage , 2011 .

[121]  A. Yarin,et al.  Nano-encapsulated smart tunable phase change materials , 2011 .

[122]  Ronald J. Warzoha,et al.  Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers , 2011 .

[123]  A. Sari,et al.  Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage , 2011 .

[124]  L. Drzal,et al.  Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material , 2011 .

[125]  Zhong-Zhen Yu,et al.  Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives , 2011 .

[126]  Shan Hu,et al.  The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials , 2011 .

[127]  Jianjian Wang,et al.  Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions , 2011, Nature communications.

[128]  Wei Li,et al.  Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials , 2011 .

[129]  Ruzhu Wang,et al.  Preparation and thermal characterization of expanded graphite/paraffin composite phase change material , 2010 .

[130]  Hongwei Zhu,et al.  Carbon Nanotube Sponges , 2010, Advanced materials.

[131]  Huaqing Xie,et al.  Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers , 2010 .

[132]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[133]  A. Sari,et al.  Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material , 2009 .

[134]  A. Sari,et al.  Poly(ethylene glycol)/poly(methyl methacrylate) blends as novel form‐stable phase‐change materials for thermal energy storage , 2009 .

[135]  R. L. Sawhney,et al.  Solar water heaters with phase change material thermal energy storage medium: A review , 2009 .

[136]  T. Akiyama,et al.  Impregnation of porous material with phase change material for thermal energy storage , 2009 .

[137]  Zhong Xin,et al.  Thermal properties of paraffin based composites containing multi-walled carbon nanotubes , 2009 .

[138]  Lixian Sun,et al.  Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM , 2009 .

[139]  A. Sari,et al.  Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage , 2008 .

[140]  T. Akiyama,et al.  Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system , 2008 .

[141]  K. Lafdi,et al.  Carbon nanoadditives to enhance latent energy storage of phase change materials , 2008 .

[142]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[143]  Khamid Mahkamov,et al.  Solar energy storage using phase change materials , 2007 .

[144]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[145]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[146]  J. Selman,et al.  Thermal conductivity enhancement of phase change materials using a graphite matrix , 2006 .

[147]  Imre Dékány,et al.  Evolution of surface functional groups in a series of progressively oxidized graphite oxides , 2006 .

[148]  K. Sagara,et al.  Latent Heat Storage Materials and Systems: A Review , 2005 .

[149]  Yrjö H. Roos,et al.  Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols , 2001 .

[150]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[151]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.